2018
Authors
Kurunathan, H; Severino, R; Koubaa, A; Tovar, E;
Publication
IEEE COMMUNICATIONS SURVEYS AND TUTORIALS
Abstract
The advancements in information and communication technology in the past decades have been converging into a new communication paradigm in which everything is expected to be interconnected. The Internet of Things, more than a buzzword, is becoming a reality, and is finding its way into the industrial domain, enabling what is now dubbed as the Industry 4.0. Among several standards that help in enabling Industry 4.0, the IEEE 802.15.4e standard addresses requirements such as increased robustness and reliability. Although the standard seems promising, the technology is still immature and rather unproven. Also, there has been no thorough survey of the standard with emphasis on the understanding of the performance improvement in regards to the legacy protocol IEEE 802.15.4. In this survey, we aim at filling this gap by carrying out a performance analysis and thorough discussions of the main features and enhancements of IEEE 802.15.4e. We also provide a literature survey concerning the already proposed add-ons and available tools. We believe this work will help to identify the merits of IEEE 802.15.4e and to contribute towards a faster adoption of this technology as a supporting communication infrastructure for future industrial scenarios.
2018
Authors
Kurunathan, H; Severino, R; Koubaa, A; Tovar, E;
Publication
2018 17TH ACM/IEEE INTERNATIONAL CONFERENCE ON INFORMATION PROCESSING IN SENSOR NETWORKS (IPSN)
Abstract
Deterministic Synchronous Multichannel Extension (DSME) is a prominent MAC behavior first introduced in IEEE 802.15.4e that supports deterministic guarantees using its multisuperframe structure. DSME also facilitates techniques like multi-channel and CAP reduction that help to increase the number of available guaranteed timeslots in a network. However, no tuning of these functionalities in dynamic scenarios is supported in the standard. In this paper, we present an effective multisuperframe tuning technique that also helps to utilize CAP reduction in an effective manner improving flexibility and scalability, while guaranteeing bounded delay.
2020
Authors
Kurunathan, H; Severino, R; Koubaa, A; Tovar, E;
Publication
ACM SIGBED Review
Abstract
2020
Authors
Kurunathan, H; Severino, R; Koubaa, A; Tovar, E;
Publication
ACM SIGBED Review
Abstract
2013
Authors
Severino, R; Pereira, N; Tovar, E;
Publication
2013 IEEE 16TH INTERNATIONAL SYMPOSIUM ON OBJECT/COMPONENT/SERVICE-ORIENTED REAL-TIME DISTRIBUTED COMPUTING (ISORC)
Abstract
While Cluster-Tree network topologies look promising for WSN applications with timeliness and energy-efficiency requirements, we are yet to witness its adoption in commercial and academic solutions. One of the arguments that hinder the use of these topologies concerns the lack of flexibility in adapting to changes in the network, such as in traffic flows. This paper presents a solution to provide these networks with the ability to self-adapt to different bandwidth and latency requirements, imposed by traffic flows, by changing the cluster's duty-cycle and scheduling. Importantly, our approach enables a network to change its cluster scheduling without requiring long inaccessibility times or the re-association of the nodes. We show how to apply our methodology to the case of IEEE 802.15.4/ZigBee cluster-tree WSNs without significant changes to the protocol. Finally, we analyze and demonstrate the validity of our methodology through a comprehensive simulation and experimental validation using commercially available technology on a Structural Health Monitoring application scenario.
2014
Authors
Severino, R; Pereira, N; Tovar, E;
Publication
SPRINGERPLUS
Abstract
While Cluster-Tree network topologies look promising for WSN applications with timeliness and energy-efficiency requirements, we are yet to witness its adoption in commercial and academic solutions. One of the arguments that hinder the use of these topologies concerns the lack of flexibility in adapting to changes in the network, such as in traffic flows. This paper presents a solution to enable these networks with the ability to self-adapt their clusters' duty-cycle and scheduling, to provide increased quality of service to multiple traffic flows. Importantly, our approach enables a network to change its cluster scheduling without requiring long inaccessibility times or the re-association of the nodes. We show how to apply our methodology to the case of IEEE 802.15.4/ZigBee cluster-tree WSNs without significant changes to the protocol. Finally, we analyze and demonstrate the validity of our methodology through a comprehensive simulation and experimental validation using commercially available technology on a Structural Health Monitoring application scenario.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.