Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Publications

Publications by Filipe Vamonde Oliveira

2025

Using Explanations to Estimate the Quality of Computer Vision Models

Authors
Oliveira, F; Carneiro, D; Pereira, J;

Publication
HUMAN-CENTRED TECHNOLOGY MANAGEMENT FOR A SUSTAINABLE FUTURE, VOL 2, IAMOT

Abstract
Explainable AI (xAI) emerged as one of the ways of addressing the interpretability issues of the so-called black-box models. Most of the xAI artifacts proposed so far were designed, as expected, for human users. In this work, we posit that such artifacts can also be used by computer systems. Specifically, we propose a set of metrics derived from LIME explanations, that can eventually be used to ascertain the quality of each output of an underlying image classification model. We validate these metrics against quantitative human feedback, and identify 4 potentially interesting metrics for this purpose. This research is particularly useful in concept drift scenarios, in which models are deployed into production and there is no new labelled data to continuously evaluate them, becoming impossible to know the current performance of the model.

2024

Fabric Defect Detection and Localization

Authors
Oliveira, F; Carneiro, D; Ferreira, H; Guimaraes, M;

Publication
ADVANCES IN ARTIFICIAL INTELLIGENCE IN MANUFACTURING, ESAIM 2023

Abstract
Quality inspection is crucial in the textile industry as it ensures that the final products meet the required standards. It helps detect and address defects, such as fabric flaws and stitching irregularities, enhancing customer satisfaction, and optimizing production efficiency by identifying areas of improvement, reducing waste, and minimizing rework. In the competitive textile market, it is vital for maintaining customer loyalty, brand reputation, and sustained success. Nonetheless, and despite the importance of quality inspection, it is becoming increasingly harder to hire and train people for such tedious and repetitive tasks. In this context, there is an increased interest in automated quality control techniques that can be used in the industrial domain. In this paper we describe a computer vision model for localizing and classifying different types of defects in textiles. The model developed achieved an mAP@0.5 of 0.96 on the validation dataset. While this model was trained with a publicly available dataset, we will soon use the same architecture with images collected from Jacquard looms in the context of a funded research project. This paper thus represents an initial validation of the model for the purposes of fabric defect detection.

2024

Supervised and unsupervised techniques in textile quality inspections

Authors
Ferreira, HM; Carneiro, DR; Guimaraes, MA; Oliveira, FV;

Publication
5TH INTERNATIONAL CONFERENCE ON INDUSTRY 4.0 AND SMART MANUFACTURING, ISM 2023

Abstract
Quality inspection is a critical step in ensuring the quality and efficiency of textile production processes. With the increasing complexity and scale of modern textile manufacturing systems, the need for accurate and efficient quality inspection and defect detection techniques has become paramount. This paper compares supervised and unsupervised Machine Learning techniques for defect detection in the context of industrial textile production, in terms of their respective advantages and disadvantages, and their implementation and computational costs. We explore the use of an autoencoder for the detection of defects in textiles. The goal of this preliminary work is to find out if unsupervised methods can successfully train models with good performance without the need for defect labelled data. (c) 2023 The Authors. Published by Elsevier B.V.

2023

Dynamic Management of Distributed Machine Learning Projects

Authors
Oliveira, F; Alves, A; Moço, H; Monteiro, J; Oliveira, O; Carneiro, D; Novais, P;

Publication
INTELLIGENT DISTRIBUTED COMPUTING XV, IDC 2022

Abstract
Given the new requirements of Machine Learning problems in the last years, especially in what concerns the volume, diversity and speed of data, new approaches are needed to deal with the associated challenges. In this paper we describe CEDEs - a distributed learning system that runs on top of an Hadoop cluster and takes advantage of blocks, replication and balancing. CEDEs trains models in a distributed manner following the principle of data locality, and is able to change parts of the model through an optimization module, thus allowing a model to evolve over time as the data changes. This paper describes its generic architecture, details the implementation of the first modules, and provides a first validation.

2021

A Data-Locality-Aware Distributed Learning System

Authors
Carneiro, D; Oliveira, F; Novais, P;

Publication
Ambient Intelligence - Software and Applications - 12th International Symposium on Ambient Intelligence, ISAmI 2021, Salamanca, Spain, 6-8 October, 2021.

Abstract
Machine Learning problems are significantly growing in complexity, either due to an increase in the volume of data, to new forms of data, or due to the change of data over time. This poses new challenges that are both technical and scientific. In this paper we propose a Distributed Learning System that runs on top of a Hadoop cluster, leveraging its native functionalities. It is guided by the principle of data locality. Data are distributed across the cluster, so models are also distributed and trained in parallel. Models are thus seen as Ensembles of base models, and predictions are made by combining the predictions of the base models. Moreover, models are replicated and distributed across the cluster, so that multiple nodes can answer requests. This results in a system that is both resilient and with high availability. © 2022, The Author(s), under exclusive license to Springer Nature Switzerland AG.

2023

The Impact of Data Selection Strategies on Distributed Model Performance

Authors
Guimarães, M; Oliveira, F; Carneiro, D; Novais, P;

Publication
Ambient Intelligence - Software and Applications - 14th International Symposium on Ambient Intelligence, ISAmI 2023, Guimarães, Portugal, July 12-14, 2023

Abstract
Distributed Machine Learning, in which data and learning tasks are scattered across a cluster of computers, is one of the answers of the field to the challenges posed by Big Data. Still, in an era in which data abounds, decisions must still be made regarding which specific data to use on the training of the model, either because the amount of available data is simply too large, or because the training time or complexity of the model must be kept low. Typical approaches include, for example, selection based on data freshness. However, old data are not necessarily outdated and might still contain relevant patterns. Likewise, relying only on recent data may significantly decrease data diversity and representativity, and decrease model quality. The goal of this paper is to compare different heuristics for selecting data in a distributed Machine Learning scenario. Specifically, we ascertain whether selecting data based on their characteristics (meta-features), and optimizing for maximum diversity, improves model quality while, eventually, allowing to reduce model complexity. This will allow to develop more informed data selection strategies in distributed settings, in which the criteria are not only the location of the data or the state of each node in the cluster, but also include intrinsic and relevant characteristics of the data. © The Author(s), under exclusive license to Springer Nature Switzerland AG 2023.

  • 1
  • 2