2025
Authors
Rema, C; Sousa, A; Sobreira, H; Costa, P; Silva, MF;
Publication
2025 IEEE INTERNATIONAL CONFERENCE ON AUTONOMOUS ROBOT SYSTEMS AND COMPETITIONS, ICARSC
Abstract
The rise of Industry 4.0 has revolutionized manufacturing by integrating real-time data analysis, artificial intelligence (AI), automation, and interconnected systems, enabling adaptive and resilient smart factories. Autonomous Mobile Robots (AMRs), with their advanced mobility and navigation capabilities, are a pillar of this transformation. However, their deployment in job shop environments adds complexity to the already challenging Job Shop Scheduling Problem (JSSP), expanding it to include task allocation, robot scheduling, and travel time optimization, creating a multi-faceted, non-deterministic polynomial-time hardness (NP-hard) problem. Traditional approaches such as heuristics, meta-heuristics, and mixed integer linear programming (MILP) are commonly used. Recent AI advancements, particularly large language models (LLM), have shown potential in addressing these scheduling challenges due to significant improvements in reasoning and decision-making from textual data. This paper examines the application of LLM to tackle scheduling complexities in smart job shops with mobile robots. Guided by tailored prompts inserted manually, LLM are employed to generate scheduling solutions, being these compared to an heuristic-based method. The results indicate that LLM currently have limitations in solving complex combinatorial problems, such as task scheduling with mobile robots. Due to issues with consistency and repeatability, they are not yet reliable enough for practical implementation in industrial environments. However, they offer a promising foundation for augmenting traditional approaches in the future.
2025
Authors
Rema C.; Santos R.; Piqueiro H.; Matos D.M.; Oliveirat P.M.; Costa P.; Silva M.F.;
Publication
2025 IEEE INTERNATIONAL CONFERENCE ON AUTONOMOUS ROBOT SYSTEMS AND COMPETITIONS, ICARSC
Abstract
Industry 4.0 is transforming manufacturing environments, with robotics being a key technology that enhances various capabilities. The flexibility of Autonomous Mobile Robots has led to the rise of multi-robot systems in industrial settings. Considering the high cost of these robots, it is essential to determine the best fit of number and type before making any major investments. Simulation and modeling are valuable decision-support tools, allowing the simulation of different setups to address robot fleet sizing issues. This paper introduces a decision-support framework that combines a fleet manager software stack with the FlexSim simulator, helping decision-makers determine the most suitable mobile robots fleet size tailored to their needs. Unlike previous approaches, the developed solution integrates the same real robot coordination software in both simulation and actual deployment, ensuring that tested scenarios accurately reflect real-world conditions. A case study was conducted to evaluate the framework, involving multiple tasks of loading and unloading materials within a warehouse. Five different scenarios with varying fleet sizes were simulated, and their performances assessed. The analysis concluded that, for the case study under consideration, a fleet of three robots was the most suitable, considering relevant key performance indicators. The results confirmed that the developed solution is an effective alternative for addressing the problem and represents a novel technology with no prior state-of-the-art equivalents.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.