Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Publications

Publications by HumanISE

2025

Method for Evaluation and Classification of Self and Co-regulation of Learning in Immersive Narratives

Authors
Bonfim, CJ; Morgado, L; Pedrosa, D;

Publication
IMMERSIVE LEARNING RESEARCH NETWORK, ILRN 2024, PT I

Abstract
Self and co-regulation of learning (SCRL) are strategies that students can adopt to become more active and committed to their learning. Encouraging students to adopt these strategies is a challenge for teachers that can be met by using narratives as a teaching resource. To support teachers in this process, we present a method for evaluating, classifying, and reflecting on excerpts from immersive narratives for SCRL, so they objectively base their decision-making. The method was developed as an artifact of Design Science Research (DSR). In the Design stage of DSR, a 4-stage scheme was developed, and 38 criteria were described to identify and classify narratives that guide or encourage students to adopt SCRL strategies. In the DSR demonstration stage, we tested the method in an asynchronous e-learning curricular unit in Portuguese higher education, which uses a narrative-oriented immersive learning approach for SCRL, called e-SimProgramming. The results show that the graphic visualization of the classification made it possible to perceive the occurrence of the SCRL categories in the narratives, enabling the teacher to be inspired and reflect on the categories to be enhanced for necessary changes in the narrative in line with their pedagogical objectives.

2025

Automated optical system for quality inspection on reflective parts

Authors
Nascimento, R; Rocha, CD; Gonzalez, DG; Silva, T; Moreira, R; Silva, MF; Filipe, V; Rocha, LF;

Publication
INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY

Abstract
The growing demand for high-quality components in various industries, particularly in the automotive sector, requires advanced and reliable inspection methods to maintain competitive standards and support innovation. Manual quality inspection tasks are often inefficient and prone to errors due to their repetitive nature and subjectivity, which can lead to attention lapses and operator fatigue. The inspection of reflective aluminum parts presents additional challenges, as uncontrolled reflections and glare can obscure defects and reduce the reliability of conventional vision-based methods. Addressing these challenges requires optimized illumination strategies and robust image processing techniques to enhance defect visibility. This work presents the development of an automated optical inspection system for reflective parts, focusing on components made of high-pressure diecast aluminum used in the automotive industry. The reflective nature of these parts introduces challenges for defect detection, requiring optimized illumination and imaging methods. The system applies deep learning algorithms and uses dome light to achieve uniform illumination, enabling the detection of small defects on reflective surfaces. A collaborative robotic manipulator equipped with a gripper handles the parts during inspection, ensuring precise positioning and repeatability, which improves both the efficiency and effectiveness of the inspection process. A flow execution-based software platform integrates all system components, enabling seamless operation. The system was evaluated with Schmidt Light Metal Group using three custom datasets to detect surface porosities and inner wall defects post-machining. For surface porosity detection, YOLOv8-Mosaic, trained with cropped images to reduce background noise, achieved a recall value of 84.71% and was selected for implementation. Additionally, an endoscopic camera was used in a preliminary study to detect defects within the inner walls of holes. The industrial trials produced promising results, demonstrating the feasibility of implementing a vision-based automated inspection system in various industries. The system improves inspection accuracy and efficiency while reducing material waste and operator fatigue.

2025

Towards Non-invasive Detection of Gastric Intestinal Metaplasia: A Deep Learning Approach Using Narrow Band Imaging Endoscopy

Authors
Capela, S; Lage, J; Filipe, V;

Publication
DISTRIBUTED COMPUTING AND ARTIFICIAL INTELLIGENCE, SPECIAL SESSIONS II, 21ST INTERNATIONAL CONFERENCE

Abstract
Gastric cancer, ranking as the sixth most prevalent cancer globally and a leading cause of cancer-related mortality, follows a sequential progression known as Correa's cascade, spanning from chronic gastritis to eventual malignancy. Although endoscopy exams using NarrowBand Imaging are recommended by internationally accepted guidelines for diagnostic Gastric Intestinal Metaplasia, the lack of endoscopists with the skill to assess the NBI image patterns and the disagreement between endoscopists when assessing the same image, have made the use of biopsies the gold standard still used today. This proposal doctoral thesis seeks to address the challenge of developing a Computer-Aided Diagnosis solution for GIM detection in NBI endoscopy exams, aligning with the established guidelines, the Management of Epithelial Precancerous Conditions and Lesions in the Stomach. Our approach will involve a dataset creation that follows the standardized approach for histopathological classification of gastrointestinal biopsies, the Sydney System recommended by MAPS II guidelines, and annotation by gastroenterology experts. Deep learning models, including Convolutional Neural Networks, will be trained and evaluated, aiming to establish an internationally accepted AI-driven alternative to biopsies for GIM detection, promising expedited diagnosis, and cost reduction.

2025

Riding with Intelligence: Advanced Rider Assistance Systems Proposal

Authors
Silva, J; Ullah, Z; Reis, A; Pires, E; Pendao, C; Filipe, V;

Publication
DISTRIBUTED COMPUTING AND ARTIFICIAL INTELLIGENCE, SPECIAL SESSIONS I, 21ST INTERNATIONAL CONFERENCE

Abstract
Road safety is a global issue, with road-related accidents being one of the biggest leading causes of death. Motorcyclists are especially susceptible to injuries and death when there is an accident, due to the inherent characteristics of motorcycles. Accident prevention is paramount. To improve motorcycle safety, this paper discusses and proposes a preliminary architecture of a system composed of various sensors, to assist and warn the rider of potentially dangerous situations such as front and back collision warnings, pedestrian collision warnings, and road monitoring.

2025

Machine Learning for Decision Support and Automation in Games: A Study on Vehicle Optimal Path

Authors
Penelas, G; Barbosa, L; Reis, A; Barroso, J; Pinto, T;

Publication
ALGORITHMS

Abstract
In the field of gaming artificial intelligence, selecting the appropriate machine learning approach is essential for improving decision-making and automation. This paper examines the effectiveness of deep reinforcement learning (DRL) within interactive gaming environments, focusing on complex decision-making tasks. Utilizing the Unity engine, we conducted experiments to evaluate DRL methodologies in simulating realistic and adaptive agent behavior. A vehicle driving game is implemented, in which the goal is to reach a certain target within a small number of steps, while respecting the boundaries of the roads. Our study compares Proximal Policy Optimization (PPO) and Soft Actor-Critic (SAC) in terms of learning efficiency, decision-making accuracy, and adaptability. The results demonstrate that PPO successfully learns to reach the target, achieving higher and more stable cumulative rewards. Conversely, SAC struggles to reach the target, displaying significant variability and lower performance. These findings highlight the effectiveness of PPO in this context and indicate the need for further development, adaptation, and tuning of SAC. This research contributes to developing innovative approaches in how ML can improve how player agents adapt and react to their environments, thereby enhancing realism and dynamics in gaming experiences. Additionally, this work emphasizes the utility of using games to evolve such models, preparing them for real-world applications, namely in the field of vehicles' autonomous driving and optimal route calculation.

2025

A Look at Prevalent Vulnerabilities in Web and Mobile Applications: A Brief Systematic Review

Authors
Ferreira, A; Barroso, J; Reis, A; Gouveia, AJ;

Publication
Smart Innovation, Systems and Technologies

Abstract
This article presents a systematic review of the most prevalent vulnerabilities plaguing web and mobile applications. By analyzing recent research, it identifies a core set of vulnerabilities, including injection flaws, broken authentication, cross-site scripting (XSS), and insecure direct object references. Recognizing the human element, the article acknowledges the role of social engineering in exploiting these technical weaknesses. The review delves deeper, exploring how these vulnerabilities manifest differently across web and mobile platforms, considering factors like server-side security and API access. The research concludes by advocating for a defense strategy, emphasizing the importance of secure coding practices, robust authentication, and user awareness training. This comprehensive approach paves the way for a more secure digital landscape where both web and mobile applications can thrive. © The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2025.

  • 4
  • 647