Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Publications

Publications by HumanISE

2026

An Explosion of the Uses of Immersive Learning Environments: A Mapping of Reviews Update

Authors
Beck, E; Morgado, LC; O’Shea, M;

Publication
Communications in Computer and Information Science

Abstract
Since the publication of the 2020 paper, “Finding the Gaps About Uses of Immersive Learning Environments: A Survey of Surveys,” the landscape of immersive learning environments (ILEs) has continued to evolve rapidly. This update aims to revisit the gaps identified in that previous research and explore emerging trends. We conducted an extensive review of new surveys published after that paper’s cut date. Our findings reveal a significant amount of new published reviews (n?=?64), more than doubling the original corpus (n?=?47). The results highlighted novel themes of usage of immersive environments, helping bridge some 2020 research gaps. This paper discusses those developments and presents a consolidated perspective on the uses of immersive learning environments. © 2025 Elsevier B.V., All rights reserved.

2026

Real-Time Prediction of Wikipedia Articles’ Quality

Authors
Moás, PM; Teixeira Lopes, C;

Publication
Lecture Notes in Computer Science

Abstract
Wikipedia is the largest and most globally well-known online encyclopedia, but its collaborative nature leads to a significant disparity in article quality. In this work, we explore real-time and automatic quality assessment within Wikipedia through machine-learning. We first constructed a dataset of 36,000 English articles and 145 features, then compared the performance of multiple classification and regression algorithms and studied how the number of classes and features affects the model’s performance. The six-class experiments achieved a classifier accuracy of 64% and a mean absolute error of 0.09 in regression methods, which matches or beats most state-of-the-art approaches. Our model produces similar results on some non-English Wikipedias, but the error is slightly higher on other versions. We have also determined that the features measuring the article’s content and revision history bring the largest performance boost. © 2025 Elsevier B.V., All rights reserved.

2026

Comparing and extending satisfiability solution methods for the resource-constrained project scheduling problem

Authors
Coelho J.; Vanhoucke M.;

Publication
Computers and Operations Research

Abstract
This paper solves the resource-constrained project scheduling problem (RCPSP) with a satisfiability problem (SAT) solver. This paper builds further on various existing SAT models for this well-known project scheduling problem and extends them with two methods to satisfy the resource constraints. Specifically, we use the well-known minimal forbidden sets and compare them with the so-called covers that are traditionally used in SAT implementations. Moreover, we also implement an existing binary decision trees approach under various settings and extend the model with networks with adders, so far never used for solving the RCPSP, to guarantee that resource constraints are satisfied. The algorithms are tested under different settings on a set of 13,413 project instances with diverse network and resource structures, and the experiments demonstrate that a combination of these approaches help in finding better solutions within a reasonable time. Moreover, 393 new lower bounds, 62 new upper bounds, and 290 optimally solved instances (including 18 from the PSPLIB) have been discovered, which, to the best of our knowledge, had not been found before. The strong performance of the new algorithm motivated additional experiments, and the preliminary results suggest several promising directions for future research.

2026

A framework for supporting the reproducibility of computational experiments in multiple scientific domains

Authors
Costa, L; Barbosa, S; Cunha, J;

Publication
Future Gener. Comput. Syst.

Abstract
In recent years, the research community, but also the general public, has raised serious questions about the reproducibility and replicability of scientific work. Since many studies include some kind of computational work, these issues are also a technological challenge, not only in computer science, but also in most research domains. Computational replicability and reproducibility are not easy to achieve due to the variety of computational environments that can be used. Indeed, it is challenging to recreate the same environment via the same frameworks, code, programming languages, dependencies, and so on. We propose a framework, known as SciRep, that supports the configuration, execution, and packaging of computational experiments by defining their code, data, programming languages, dependencies, databases, and commands to be executed. After the initial configuration, the experiments can be executed any number of times, always producing exactly the same results. Our approach allows the creation of a reproducibility package for experiments from multiple scientific fields, from medicine to computer science, which can be re-executed on any computer. The produced package acts as a capsule, holding absolutely everything necessary to re-execute the experiment. To evaluate our framework, we compare it with three state-of-the-art tools and use it to reproduce 18 experiments extracted from published scientific articles. With our approach, we were able to execute 16 (89%) of those experiments, while the others reached only 61%, thus showing that our approach is effective. Moreover, all the experiments that were executed produced the results presented in the original publication. Thus, SciRep was able to reproduce 100% of the experiments it could run. © 2025 The Authors

2026

Renewable Energy Into Sustainability Metrics: A Multicriteria Decision

Authors
Rodrigues H.S.; Garcia J.E.; Silva Â.;

Publication
Communications in Computer and Information Science

Abstract
The integration of renewable energy into sustainability metrics is essential for achieving the Sustainable Development Goals (SDGs), particularly in regions aiming to balance energy efficiency, waste management, and urban development. This study explores the application of multicriteria decision-making and statistical techniques to evaluate municipal sustainability, with a focus on renewable energy, using the Alto Minho region of Portugal as a case study. The analysis incorporates 12 SDG indicators across ten municipalities, addressing energy consumption, urban renewal, and waste management. Cluster analysis revealed distinct groups of municipalities, highlighting disparities in sustainability performance. Municipalities such as Melgaço and Monção excelled in energy-related metrics, while others showed strengths in waste management and urban renewal. The Analytic Hierarchy Process (AHP) emphasized the importance of renewable energy indicators, revealing notable changes in rankings when energy-related criteria were prioritized. Ponte de Lima and Melgaço ranked highest under energy-focused weighting schemes, showcasing their leadership in energy efficiency and renewable adoption. The findings underscore the need for targeted policies to enhance sustainability across municipalities, particularly in regions lagging in energy performance.

2025

LLM Prompt Engineering for Automated White-Box Integration Test Generation in REST APIs

Authors
Rincon, AM; Vincenzi, AMR; Faria, JP;

Publication
2025 IEEE INTERNATIONAL CONFERENCE ON SOFTWARE TESTING, VERIFICATION AND VALIDATION WORKSHOPS, ICSTW

Abstract
This study explores prompt engineering for automated white-box integration testing of RESTful APIs using Large Language Models (LLMs). Four versions of prompts were designed and tested across three OpenAI models (GPT-3.5 Turbo, GPT-4 Turbo, and GPT-4o) to assess their impact on code coverage, token consumption, execution time, and financial cost. The results indicate that different prompt versions, especially with more advanced models, achieved up to 90% coverage, although at higher costs. Additionally, combining test sets from different models increased coverage, reaching 96% in some cases. We also compared the results with EvoMaster, a specialized tool for generating tests for REST APIs, where LLM-generated tests achieved comparable or higher coverage in the benchmark projects. Despite higher execution costs, LLMs demonstrated superior adaptability and flexibility in test generation.

  • 1
  • 678