2023
Authors
Severino, R; Rodrigues, J; Alves, J; Ferreira, LL;
Publication
JOURNAL OF SENSOR AND ACTUATOR NETWORKS
Abstract
The fast development and adoption of IoT technologies has been enabling their application into increasingly sensitive domains, such as Medical and Industrial IoT, in which safety and cyber-security are paramount. While the number of deployed IoT devices increases annually, they still present severe cyber-security vulnerabilities, becoming potential targets and entry points for further attacks. As these nodes become compromised, attackers aim to set up stealthy communication behaviours, to exfiltrate data or to orchestrate nodes in a cloaked fashion, and network timing covert channels are increasingly being used with such malicious intents. The IEEE 802.15.4 is one of the most pervasive protocols in IoT and a fundamental part of many communication infrastructures. Despite this fact, the possibility of setting up such covert communication techniques on this medium has received very little attention. We aim to analyse the performance and feasibility of such covert-channel implementations upon the IEEE 802.15.4 protocol, particularly upon the DSME behaviour, one of the most promising for large-scale time critical communications. This enables us to better understand the involved risk of such threats and help support the development of active cyber-security mechanisms to mitigate these threats, which, for now, we provide in the form of practical network setup recommendations.
2023
Authors
Carvalho, T; Pinho, LM; Samadi, M; Royuela, S; Munera, A; Quiñones, E;
Publication
2023 IEEE 21ST INTERNATIONAL CONFERENCE ON INDUSTRIAL INFORMATICS, INDIN
Abstract
High-performance cyber-physical applications impose several requirements with respect to performance, functional correctness and non-functional aspects. Nowadays, the design of these systems usually follows a model-driven approach, where models generate executable applications, usually with an automated approach. As these applications might execute in different parallel environments, their behavior becomes very hard to predict, and making the verification of non-functional requirements complicated. In this regard, it is crucial to analyse and understand the impact that the mapping and scheduling of computation have on the real-time response of the applications. In fact, different strategies in these steps of the parallel orchestration may produce significantly different interference, leading to different timing behaviour. Tuning the application parameters and the system configuration proves to be one of the most fitting solutions. The design space can however be very cumbersome for a developer to test manually all combinations of application and system configurations. This paper presents a methodology and a toolset to profile, analyse, and configure the timing behaviour of highperformance cyber-physical applications and the target platforms. The methodology leverages on the possibility of generating a task dependency graph representing the parallel computation to evaluate, through measurements, different mapping configurations and select the one that minimizes response time.
2023
Authors
Monge Soares, R; Nabais, M; Pereiro, TD; Dias, R; Hipólito, J; Fonte, J; Gonçalves Seco, L; Menéndez-Marsh, F; Neves, A;
Publication
Estudos do Quaternário / Quaternary Studies
Abstract
2023
Authors
Soares, RM; Nabais, M; Pereiro, TD; Dias, R; Hipólito, J; Fonte, J; Seco, LG; Menéndez Marsh, F; Neves, A;
Publication
Estudos do Quaternario
Abstract
This study presents a new tridimensional perspective on Castelo Velho de Safara (Moura), one of the great walled settlements of the Iron Age/Roman Republic by the Guadiana River, obtained through a high-resolution survey using a drone integrated with a LiDAR sensor. The outline of the walls was defined in more detail, which meant revising the occupation area, now estimated at circa 1.36 hectares. Several unknown elements were detected, such as the entrance area and other possible defensive structures. The data obtained for the Castelo Velho de Safara demonstrate the potential of LiDAR for understanding the topographical characteristics of this type of fortified enclosure, whose structural remains are not always clear to the naked eye. © 2023, APEQ - Associacao Portuguesa para o Estudo do Quaternario. All rights reserved.
2023
Authors
Menéndez Marsh, F; Al Rawi, M; Fonte, J; Dias, R; Gonçalves, LJ; Seco, LG; Hipólito, J; Machado, JP; Medina, J; Moreira, J; Do Pereiro, T; Vázquez, M; Neves, A;
Publication
Journal of Computer Applications in Archaeology
Abstract
2023
Authors
Canedo, D; Fonte, J; Seco, LG; Vazquez, M; Dias, R; Do Pereiro, T; Hipolito, J; Menendez-Marsh, F; Georgieva, P; Neves, AJR;
Publication
IEEE ACCESS
Abstract
Mapping potential archaeological sites using remote sensing and artificial intelligence can be an efficient tool to assist archaeologists during project planning and fieldwork. This paper explores the use of airborne LiDAR data and data-centric artificial intelligence for identifying potential burial mounds. The challenge of exploring the landscape and mapping new archaeological sites, coupled with the difficulty of identifying them through visual analysis of remote sensing data, results in the recurring issue of insufficient annotations. Additionally, the top-down nature of LiDAR data hinders artificial intelligence in its search, as the morphology of archaeological sites blends with the morphology of natural and artificial shapes, leading to a frequent occurrence of false positives. To address this problem, a novel data-centric artificial intelligence approach is proposed, exploring the available data and tools. The LiDAR data is pre-processed into a dataset of 2D digital elevation images, and the known burial mounds are annotated. This dataset is augmented with a copy-paste object embedding based on Location-Based Ranking. This technique uses the Land-Use and Occupation Charter to segment the regions of interest, where burial mounds can be pasted. YOLOv5 is trained on the resulting dataset to propose new burial mounds. These proposals go through a post-processing step, directly using the 3D data acquired by the LiDAR to verify if its 3D shape is similar to the annotated sites. This approach drastically reduced false positives, attaining a 72.53% positive rate, relevant for the ground-truthing phase where archaeologists visit the coordinates of proposed burial mounds to confirm their existence.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.