Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Publications

Publications by HumanISE

2024

Normalized strength-degree centrality: identifying influential spreaders for weighted network

Authors
Sadhu, S; Namtirtha, A; Malta, MC; Dutta, A;

Publication
SOCIAL NETWORK ANALYSIS AND MINING

Abstract
Influential spreaders are key nodes in networks that maximize or control the spreading processes. Many real-world systems are represented as weighted networks, and several indexing methods, such as weighted betweenness, closeness, k-shell decomposition, voterank, and mixed degree decomposition, among others, have been proposed to identify these influential nodes. However, these methods often face limitations such as high computational cost, non-monotonic rankings, and reliance on tunable parameters. To address these issues, this paper introduces a new tunable parameter-free method, Normalized Strength-Degree Centrality (nsd), which efficiently combines a node's normalized degree and strength to measure its influence across various network structures. Experimental results on eleven real and synthetic weighted networks show that nsd outperforms the existing methods in accurately identifying influential spreaders, strongly correlating to the Weighted Susceptible-Infected-Recovered (WSIR) model. Additionally, nsd is a parameter-free method that does not require time-consuming preprocessing to estimate rankings.

2024

An automated approach for binary classification on imbalanced data

Authors
Vieira, PM; Rodrigues, F;

Publication
KNOWLEDGE AND INFORMATION SYSTEMS

Abstract
Imbalanced data are present in various business sectors and must be handled with the proper resampling methods and classification algorithms. To handle imbalanced data, there are numerous resampling and learning method combinations; nonetheless, their effective use necessitates specialised knowledge. In this paper, several approaches, ranging from more accessible to more advanced in the domain of data resampling techniques, will be considered to handle imbalanced data. The application developed delivers recommendations of the most suitable combinations of techniques for a specific dataset by extracting and comparing dataset meta-feature values recorded in a knowledge base. It facilitates effortless classification and automates part of the machine learning pipeline with comparable or better results than state-of-the-art solutions and with a much smaller execution time.

2023

Proceedings of the 18th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications, VISIGRAPP 2023, Volume 1: GRAPP, Lisbon, Portugal, February 19-21, 2023

Authors
de Sousa, AA; Rogers, TB; Bouatouch, K;

Publication
VISIGRAPP (1: GRAPP)

Abstract

2023

Computer Vision, Imaging and Computer Graphics Theory and Applications - 16th International Joint Conference, VISIGRAPP 2021, Virtual Event, February 8-10, 2021, Revised Selected Papers

Authors
de Sousa, AA; Havran, V; Paljic, A; Peck, TC; Hurter, C; Purchase, HC; Farinella, GM; Radeva, P; Bouatouch, K;

Publication
VISIGRAPP (Revised Selected Papers)

Abstract

2023

Computer Vision, Imaging and Computer Graphics Theory and Applications - 17th International Joint Conference, VISIGRAPP 2022, Virtual Event, February 6-8, 2022, Revised Selected Papers

Authors
de Sousa, AA; Debattista, K; Paljic, A; Ziat, M; Hurter, C; Purchase, HC; Farinella, GM; Radeva, P; Bouatouch, K;

Publication
VISIGRAPP (Revised Selected Papers)

Abstract

2023

Getting in touch with metadata: a DDI subset for FAIR metadata production in clinical psychology

Authors
Castro, JA; Rodrigues, J; Mena Matos, P; M D Sales, C; Ribeiro, C;

Publication
IASSIST Quarterly

Abstract
To address metadata with researchers it is important to use models that include familiar domain concepts. In the Social Sciences, the DDI is a well-accepted source of such domain concepts. To create FAIR data and metadata, we need to establish a compact set of DDI elements that fit the requirements in projects and are likely to be adopted by researchers inexperienced with metadata creation. Over time, we have engaged in interviews and data description sessions with research groups in the Social Sciences, identifying a manageable DDI subset. A recent Clinical Psychology project, TOGETHER, dealing with risk assessment for hereditary cancer, considered the inclusion of a DDI subset for the production of metadata that are timely and interoperable with data publication initiatives in the same domain. Taking a DDI subset identified by the data curators, we make a preliminary assessment of its use as a realistic effort on the part of researchers, taking into consideration the metadata created in two data description sessions, the effort involved, and overall metadata quality. A follow-up questionnaire was used to assess the perspectives of researchers regarding data description.

  • 58
  • 662