2025
Authors
Lacet, D; Gómez, FC; Prata, S; Trindade, L; da Silva, GM; Costa, A; Zeller, Mv; Morgado, L; Coelho, A; Alves, T; Filipe, J;
Publication
IEEE Conference on Virtual Reality and 3D User Interfaces, VR 2025 - Abstracts and Workshops, Saint Malo, France, March 8-12, 2025
Abstract
The virtual reconstitution of Castelo de Vide, Portugal, within the FRONTOWNS project, highlights the challenges and successes of multidisciplinary collaboration in heritage preservation through 3D modeling. The goal was to reconstruct the town's urban evolution, focusing on its role as a border settlement from the 13th to 16th centuries. The project combined archaeological evidence, historical sources, and digital technologies like photogrammetry and 3D scanning. Co-creation workshops aligned diverse knowledge, leading to creative solutions that balanced historical accuracy and technical feasibility. Despite budget constraints, it produced a high-quality digital reconstitution with insights for future virtual heritage projects.
2025
Authors
Novais, L; Rocio, V; Morais, J;
Publication
DISTRIBUTED COMPUTING AND ARTIFICIAL INTELLIGENCE, SPECIAL SESSIONS II, 21ST INTERNATIONAL CONFERENCE
Abstract
Traditional approaches in the competitive recruitment landscape frequently encounter difficulties in effectively identifying exceptional applicants, resulting in delays, increased expenses, and biases. This study proposes the utilisation of contemporary technologies such as Large Language Models (LLMs) and chatbots to automate the process of resume screening, thereby diminishing prejudices and enhancing communication between recruiters and candidates. Algorithms based on LLM can greatly transform the process of screening by improving both its speed and accuracy. By integrating chatbots, it becomes possible to have personalised interactions with candidates and streamline the process of scheduling interviews. This strategy accelerates the hiring process while maintaining principles of justice and ethics. Its objective is to improve algorithms and procedures to meet changing requirements and enhance the competitive advantage of talent acquisition within organisations.
2025
Authors
Sousa, N; Alén, E; Losada, N; Melo, M;
Publication
TOURISM & MANAGEMENT STUDIES
Abstract
Virtual Reality (VR) has been recognised as a promising technology for enhancing the tourist experience. However, little is known about the intention of tourism business managers to adopt VR for leisure purposes. In this context, this study aims to explore this intention by interviewing managers in the sector. This process allowed us to examine their perceptions regarding the use of this technology in their business models. The results revealed that the perceived usefulness of VR is a key factor in its adoption. In addition, managers recognise the value of VR as a complement to the tourist visit, and their intention to adopt it increases when a positive return on investment is anticipated. This approach offers a unique perspective on the main factors influencing technology adoption in this context, broadens the understanding of VR applications in wine tourism, and highlights its potential to transform the visitor experience and drive growth in the sector through innovative business models.
2025
Authors
de Jesus, G; Singh, AK; Nunes, S; Yates, A;
Publication
Proceedings of the 2025 International ACM SIGIR Conference on Innovative Concepts and Theories in Information Retrieval (ICTIR)
Abstract
Dense retrieval models are generally trained using supervised learning approaches for representation learning, which require a labeled dataset (i.e., query-document pairs). However, training such models from scratch is not feasible for most languages, particularly under-resourced ones, due to data scarcity and computational constraints. As an alternative, pretrained dense retrieval models can be fine-tuned for specific downstream tasks or applied directly in zero-shot settings. Given the lack of labeled data for Tetun and the fact that existing dense retrieval models do not currently support the language, this study investigates their application in zero-shot, out-of-distribution scenarios. We adapted these models to Tetun documents, producing zero-shot embeddings, to evaluate their performance across various document representations and retrieval strategies for the ad-hoc text retrieval task. The results show that most pretrained monolingual dense retrieval models outperformed their multilingual counterparts in various configurations. Given the lack of dense retrieval models specialized for Tetun, we combine Hiemstra LM with ColBERTv2 in a hybrid strategy, achieving a relative improvement of +2.01% in P@10, +4.24% in MAP@10, and +2.45% in NDCG@10 over the baseline, based on evaluations using 59 queries and up to 2,000 retrieved documents per query. We propose dual tuning parameters for the score fusion approach commonly used in hybrid retrieval and demonstrate that enriching document titles with summaries generated by a large language model (LLM) from the documents' content significantly enhances the performance of hybrid retrieval strategies in Tetun. To support reproducibility, we publicly release the LLM-generated document summaries and run files. © 2025 Elsevier B.V., All rights reserved.
2025
Authors
Jesus, GD; Nunes, S;
Publication
Proceedings of the 2025 International ACM SIGIR Conference on Innovative Concepts and Theories in Information Retrieval (ICTIR)
Abstract
Advancements in large language model (LLM)-based conversational assistants have transformed search experiences into more natural and context-aware dialogues that resemble human conversation. However, limited access to interaction log data hinders a deeper understanding of their real-world usage. To address this gap, we analyzed 16,952 prompt logs from 904 unique users of Labadain Chat, an LLM-based conversational assistant designed for Tetun speakers, to uncover patterns in user search behavior, engagement, and intent. Our findings show that most users (29.87%) spent between one and five minutes per session, with an average of 43 unique daily users. The majority (93.97%) submitted multiple prompts per session, with an average session duration of 16.9 minutes. Most users (95.22%) were based in Timor-Leste, with education and science (28.75%) and health (28.00%) being the most searched topics. We compared our findings with a study on Google Bard logs in English, revealing similar search characteristics - including engagement duration, command-based instructions, and requests for specific assistance. Furthermore, a comparison with two conventional search engines suggests that LLM-based conversational systems have influenced user search behavior on traditional platforms, reflecting a broader trend toward command-driven queries. These insights contribute to a deeper understanding of how user search behavior evolves, particularly within low-resource language communities. To support future research, we publicly release LabadainLog-17k+, a dataset of over 17,000 real-world user search logs in Tetun, offering a unique resource for investigating conversational search in this language. © 2025 Elsevier B.V., All rights reserved.
2025
Authors
Cardoso, JMP; Najjar, WA;
Publication
Applied Reconfigurable Computing. Architectures, Tools, and Applications - 21st International Symposium, ARC 2025, Seville, Spain, April 9-11, 2025, Proceedings
Abstract
The International Symposium on Applied Reconfigurable Computing (ARC) is an annual forum for the discussion and dissemination of research, notably applying the Reconfigurable Computing (RC) concept to real-world problems. The first edition of ARC took place in 2005, and in 2024, ARC celebrated its 20th edition. During those 20 years, the field of reconfigurable computing saw a tremendous growth in its underlying technology. ARC contributed very significantly to the presentation and dissemination of new ideas, innovative applications, and fruitful discussions, all of which have resulted in the shaping of novel lines of research. Here, we present selected papers from the first 20 years of ARC, that we believe represent the corpus of work and reflect the ARC spirit by covering a broad spectrum of RC applications, benchmarks, tools, and architectures. © The Author(s), under exclusive license to Springer Nature Switzerland AG 2025.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.