Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Publications

Publications by HumanISE

2019

Stochastic interval-based optimal offering model for residential energy management systems by household owners

Authors
Gazafroudi, AS; Soares, J; Ghazvini, MAF; Pinto, T; Vale, Z; Corchado, JM;

Publication
INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS

Abstract
This paper proposes an optimal bidding strategy for autonomous residential energy management systems. This strategy enables the system to manage its domestic energy production and consumption autonomously, and trade energy with the local market through a novel hybrid interval-stochastic optimization method. This work poses a residential energy management problem which consists of two stages: day-ahead and real-time. The uncertainty in electricity price and PV power generation is modeled by interval-based and stochastic scenarios in the day-ahead and real-time transactions between the smart home and local electricity market. Moreover, the implementation of a battery included to provide energy flexibility in the residential system. In this paper, the smart home acts as a price-taker agent in the local market, and it submits its optimal offering and bidding curves to the local market based on the uncertainties of the system. Finally, the performance of the proposed residential energy management system is evaluated according to the impacts of interval optimistic and flexibility coefficients, optimal bidding strategy, and uncertainty modeling. The evaluation has shown that the proposed optimal offering model is effective in making the home system robust and achieves optimal energy transaction. Thus, the results prove that the proposed optimal offering model for the domestic energy management system is more robust than its non-optimal offering model. Moreover, battery flexibility has a positive effect on the system's total expected profit. With regarding to the bidding strategy, it is not able to impact the smart home's behavior (as a consumer or producer) in the day-ahead local electricity market.

2019

Context aware Q-Learning-based model for decision support in the negotiation of energy contracts

Authors
Rodriguez-Fernandez, J; Pinto, T; Silva, F; Praça, I; Vale, Z; Corchado, J;

Publication
International Journal of Electrical Power & Energy Systems

Abstract

2019

UCB1 Based Reinforcement Learning Model for Adaptive Energy Management in Buildings

Authors
Andrade, R; Pinto, T; Praca, I; Vale, Z;

Publication
DISTRIBUTED COMPUTING AND ARTIFICIAL INTELLIGENCE

Abstract
This paper proposes a reinforcement learning model for intelligent energy management in buildings, using a UCB1 based approach. Energy management in buildings has become a critical task in recent years, due to the incentives to the increase of energy efficiency and renewable energy sources penetration. Managing the energy consumption, generation and storage in this domain, becomes, however, an arduous task, due to the large uncertainty of the different resources, adjacent to the dynamic characteristics of this environment. In this scope, reinforcement learning is a promising solution to provide adaptiveness to the energy management methods, by learning with the on-going changes in the environment. The model proposed in this paper aims at supporting decisions on the best actions to take in each moment, regarding buildings energy management. A UCB1 based algorithm is applied, and the results are compared to those of an EXP3 approach and a simple reinforcement learning algorithm. Results show that the proposed approach is able to achieve a higher quality of results, by reaching a higher rate of successful actions identification, when compared to the other considered reference approaches.

2019

Fair Remuneration of Energy Consumption Flexibility Using Shapley Value

Authors
Faia, R; Pinto, T; Vale, Z;

Publication
PROGRESS IN ARTIFICIAL INTELLIGENCE, EPIA 2019, PT I

Abstract
This paper proposes a new methodology for fair remuneration of consumers participation in demand response events. With the increasing penetration of renewable energy sources with a high variability; the flexibility from the consumers' side becomes a crucial asset in power and energy systems. However, determining how to effectively remunerate consumers flexibility in a fair way is a challenging task. Current models tend to apply over-simplistic and non-realistic approaches which do not incentivize the participation of the required players. This paper proposes a novel methodology to remunerate consumers flexibility, in a fair way. The proposed model considers different aggregators, which manage the demand response requests within their coalition. After player provide their flexibility, the remuneration is calculated based on the flexibility amount provided by the players, the previous participation in demand response programs, the localization of the players, the type of consumer, the effort put in the provided flexibility amount, and the contribution to the stability of the coalition structure using the Shapley value. Results show that by assigning different weights to the distinct factors that compose the calculation formulation, players remuneration can be adapted to the needs and goals of both the players and the aggregators.

2019

Contextual Simulated Annealing Q-Learning for Pre-negotiation of Agent-Based Bilateral Negotiations

Authors
Pinto, T; Vale, Z;

Publication
PROGRESS IN ARTIFICIAL INTELLIGENCE, EPIA 2019, PT I

Abstract
Electricity markets are complex environments, which have been suffering continuous transformations due to the increase of renewable based generation and the introduction of new players in the system. In this context, players are forced to re-think their behavior and learn how to act in this dynamic environment in order to get as much benefit as possible from market negotiations. This paper introduces a new learning model to enable players identifying the expected prices of future bilateral agreements, as a way to improve the decision-making process in deciding the opponent players to approach for actual negotiations. The proposed model introduces a con-textual dimension in the well-known Q-Learning algorithm, and includes a simulated annealing process to accelerate the convergence process. The proposed model is integrated in a multi-agent decision support system for electricity market players negotiations, enabling the experimentation of results using real data from the Iberian electricity market.

2019

Demonstration of an Energy Consumption Forecasting System for Energy Management in Buildings

Authors
Jozi, A; Ramos, D; Gomes, L; Faria, P; Pinto, T; Vale, Z;

Publication
PROGRESS IN ARTIFICIAL INTELLIGENCE, EPIA 2019, PT I

Abstract
Due to the increment of the energy consumption and dependency of the nowadays lifestyle to the electrical appliances, the essential role of an energy management system in the buildings is realized more than ever. With this motivation, predicting energy consumption is very relevant to support the energy management in buildings. In this paper, the use of an energy management system supported by forecasting models applied to energy consumption prediction is demonstrated. The real-time automatic forecasting system is running separately but integrated with the existing SCADA system. Nine different forecasting approaches to obtain the most reliable estimated energy consumption of the building during the following hours are implemented.

  • 266
  • 663