2025
Authors
Piaia, V; Robalinho, P; Rodrigues, A; Ribeiro, AL; Silva, S; Frazao, O;
Publication
IEEE PHOTONICS TECHNOLOGY LETTERS
Abstract
In this letter, we propose a method for utilizing the internal cavities of optical circulator devices-commonly referred to as parasitic cavities-as optical reference cavities. The method involves using an optical circulator operating at 1550 nm, illuminated by a light source at 1330 nm, thereby enhancing the amplitude of the interferometric signals generated by the internal optical cavities. The system was characterized by using both an Optical Spectrum Analyzer (OSA) and the Low-Coherence Interferometry (LCI) technique. Experimental results indicate that the Optical Path Difference (OPD) remains constant with varying aperture sizes, thereby confirming the feasibility of employing the optical circulator as a reference sensor. Finally, its performance as a reference sensor is demonstrated through its integration with an external cavity that functions as a displacement sensor.
2025
Authors
Guerreiroa, A;
Publication
29TH INTERNATIONAL CONFERENCE ON OPTICAL FIBER SENSORS
Abstract
Topological photonics, leveraging concepts from condensed matter physics, offers transformative potential in the design of robust optical systems. This study investigates the integration of topologically protected edge states into plasmonic nanostructures for enhanced optical sensing. We propose a toy model comprising two chains of metallic filaments forming a one-dimensional plasmonic crystal with diatomic-like unit cells, positioned on a waveguide. The system exhibits edge states localized at the boundaries and a central defect, supported by the Su-Schrieffer-Heeger (SSH) model. These edge states, characterized by significant electric field enhancement and topological robustness, are shown to overcome key limitations in traditional plasmonic sensors, including sensitivity to noise and fabrication inconsistencies. Through coupled mode theory, we demonstrate the potential for strong coupling between plasmonic and guided optical modes, offering pathways for improved interferometric sensing schemes. This work highlights the applicability of topological photonics in advancing optical sensors.
2025
Authors
Romeiro, AF; Cavalcante, CM; Silva, AO; Costa, JCWA; Giraldi, MTR; Guerreiro, A; Santos, JL;
Publication
29TH INTERNATIONAL CONFERENCE ON OPTICAL FIBER SENSORS
Abstract
This study explores the application of machine learning algorithms to optimize the geometry of the plasmonic layer in a surface plasmon resonance photonic crystal fiber sensor. By leveraging the simplicity of linear regression ( LR) alongside the advanced predictive capabilities of the gradient boosted regression (GBR) algorithm, the proposed approach enables accurate prediction and optimization of the plasmonic layer's configuration to achieve a desired spectral response. The integration of LR and GBR with computational simulations yielded impressive results, with an R-2 exceeding 0.97 across all analyzed variables. Moreover, the predictive accuracy demonstrated a remarkably low margin of error, epsilon < 10(-15). This combination of methods provides a robust and efficient pathway for optimizing sensor design, ensuring enhanced performance and reliability in practical applications.
2025
Authors
Romeiro, F; Cardoso, P; Miranda, C; Silva, O; Costa, CWA; Giraldi, MR; Santos, L; Baptista, M; Guerreiro, A;
Publication
Journal of Microwaves, Optoelectronics and Electromagnetic Applications
Abstract
In our study, we conducted a thorough analysis of the spectral characteristics of a D-shaped surface plasmon resonance (SPR) photonic crystal fiber (PCF) refractive index sensor, incorporating a full width at half maximum (FWHM) analysis. We explored four distinct plasmonic materials—silver (Ag), gold (Au), Ga-doped zinc oxide (GZO), and an Ag-nanowire metamaterial—to understand their impact on sensor performance. Our investigation encompassed a comprehensive theoretical modeling and analysis, aiming to unravel the intricate relationship between material composition, sensor geometry, and spectral response. By scrutinizing the sensing properties offered by each material, we laid the groundwork for designing multiplasmonic resonance sensors. Our findings provide valuable insights into how different materials can be harnessed to tailor SPR sensing platforms for diverse applications and environmental conditions, fostering the development of advanced and adaptable detection systems. This research not only advances our understanding of the fundamental principles governing SPR sensor performance but also underscores the potential for leveraging varied plasmonic materials to engineer bespoke sensing solutions optimized for specific requirements and performance metrics. © 2025 SBMO/SBMag.
2025
Authors
dos Santos, PSS; Mendes, JP; Pastoriza-Santos, I; Juste, JP; de Almeida, JMMM; Coelho, LCC;
Publication
SENSORS AND ACTUATORS B-CHEMICAL
Abstract
The lower refractive index sensitivity (RIS) of plasmonic nanoparticles (NP) in comparison to their plasmonic thin films counterparts hindered their wide adoption for wavelength-based sensor designs, wasting the NP characteristic field locality. In this context, high aspect-ratio colloidal core-shell Ag@Au nanorods (NRs) are demonstrated to operate effectively at telecommunication wavelengths, showing RIS of 1720 nm/RIU at 1350 nm (O-band) and 2325 nm/RIU at 1550 nm (L-band), representing a five-fold improvement compared to similar Au NRs operating at equivalent wavelengths. Also, these NRs combine the superior optical performance of Ag with the Au chemical stability and biocompatibility. Next, using a side-polished optical fiber, we detected glyphosate, achieving a detection limit improvement from 724 to 85 mg/L by shifting from the O to the C/L optical bands. This work combines the significant scalability and cost-effective advantages of colloidal NPs with enhanced RIS, showing a promising approach suitable for both point-of-care and long-range sensing applications at superior performance than comparable thin film-based sensors in either environmental monitoring and other fields.
2025
Authors
Carvalho, JPM; Dias, BS; Coelho, LCC; de Almeida, JMMM;
Publication
SENSORS
Abstract
Magneto-optic surface plasmon resonances (MOSPRs) rely on the interaction of magnetic fields with surface plasmon polaritons (SPP) to modulate plasmonic bands with magnetic fields and enhance magneto-optical activity. In the present work, a study on the magnetoplasmonic behavior of Ag/Fe bilayers is carried out by VIS-NIR spectroscopy and backed with SQUID measurements, determining the thickness-dependent magnetization of thin-film samples. The MOSPR sensing properties of Ag/Fe planar bilayers are simulated using Berreman's matrix formalism, from which an optimized structure composed of 15 nm of Ag and 12.5 nm of Fe is obtained. The selected structure is fabricated and characterized for refractive index (RI) sensitivity, reaching 4946 RIU-1 and returning an effective enhancement of refractometric sensitivity after magneto-optical modulation. A new optimized and cobalt-free magnetoplasmonic Ag/Fe bilayer structure is studied, fabricated, and characterized for the first time towards refractometric sensing, to the best of our knowledge. This configuration exhibits potential for enhancing refractometric sensitivity via magneto-optical modulation, thus paving the way towards a simpler, more accessible, and safe type of RI sensor with potential applications in chemical sensors and biosensors.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.