Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Publications

Publications by CAP

2009

Sensitivity Improvement of a Humidity Sensor Based on Silica Nanospheres on a Long-Period Fiber Grating

Authors
Viegas, D; Goicoechea, J; Santos, JL; Araujo, FM; Ferreira, LA; Arregui, FJ; Matias, IR;

Publication
SENSORS

Abstract
This work addresses a new configuration that improves the sensitivity of a humidity sensor based on a long-period fiber grating coated with a SiO(2)-nanospheres film. An intermediate higher refractive index overlay, deposited through Electrostatic Self-Assembly, is placed between the fiber cladding and the humidity sensitive film in order to increase the total effective refractive index of the coating. With this intermediate design, a three-fold improvement in the sensitivity was obtained. Wavelength shifts up to 15 nm against 5 nm were achieved in a humidity range from 20% to 80%.

2009

Modal interferometer based on hollow-core photonic crystal fiber for strain and temperature measurement

Authors
Aref, SH; Amezcua Correa, R; Carvalho, JP; Frazao, O; Caldas, P; Santos, JL; Araujo, FM; Latifi, H; Farahi, F; Ferreira, LA; Knight, JC;

Publication
OPTICS EXPRESS

Abstract
In this work, sensitivity to strain and temperature of a sensor relying on modal interferometry in hollow-core photonic crystal fibers is studied. The sensing structure is simply a piece of hollow-core fiber connected in both ends to standard single mode fiber. An interference pattern that is associated to the interference of light that propagates in the hollow core fundamental mode with light that propagates in other modes is observed. The phase of this interference pattern changes with the measurand interaction, which is the basis for considering this structure for sensing. The phase recovery is performed using a white light interferometric technique. Resolutions of +/- 1.4 mu epsilon and +/- 0.2 degrees C were achieved for strain and temperature, respectively. It was also found that the fiber structure is not sensitive to curvature. (C) 2009 Optical Society of America

2009

Remote system for detection of low-levels of methane based on photonic crystal fibres and wavelength modulation spectroscopy

Authors
Carvalho, JP; Lehmann, H; Bartelt, H; Magalhes, F; Amezcua Correa, R; Santos, JL; Roosbroeck, JV; Arajo, FM; Ferreira, LA; Knight, JC;

Publication
Journal of Sensors

Abstract
In this work we described an optical fibre sensing system for detecting low levels of methane. The properties of hollow-core photonic crystal fibres are explored to have a sensing head with favourable characteristics for gas sensing, particularly in what concerns intrinsic readout sensitivity and gas diffusion time in the sensing structure. The sensor interrogation was performed applying the Wavelength Modulation Spectroscopy technique, and a portable measurement unit was developed with performance suitable for remote detection of low levels of methane. This portable system has the capacity to simultaneously interrogate four remote photonic crystal fibre sensing heads. Copyright © 2009 J. P. Carvalho et al.

2009

Modal Interferometer Based on ARROW Fiber for Strain and Temperature Measurement

Authors
Aref, SH; Frazao, O; Caldas, P; Ferreira, LA; Araujo, FM; Santos, JL; Latifi, H; Foy, P; Hawkins, T; Ballato, J; Her, T; Farahi, F;

Publication
IEEE PHOTONICS TECHNOLOGY LETTERS

Abstract
In this letter, interferometric sensors based on antiresonance reflecting optical waveguide (ARROW) fibers were developed, and used to sense strain and temperature. Two types of solid-ore ARROW fibers were considered and signal demodulation was achieved by using the white light interferometric technique. The ARROW fibers have two rings of high index rods arranged in a hexagonal structure with a lattice constant of 6 m. The different sizes of the rods cause different measurand sensitivities for the two fibers. Resolutions of +/- 1.1 mu epsilon and +/- 0.07 degrees C were achieved for strain and temperature, respectively.

2009

Geometrical effects on the refractive index sensitivity of Mach-Zehnder fibre modal interferometers based on long-period gratings

Authors
Caldas, P; Jorge, PAS; Araujo, FM; Ferreira, LA; Rego, G; Santos, JL;

Publication
MEASUREMENT SCIENCE & TECHNOLOGY

Abstract
In this work a modal interferometer based on arc-induced long-period gratings (LPGs) in a Mach-Zehnder configuration is evaluated as a sensing structure for environmental refractive index measurement. To interrogate this sensing device, coherence addressing and pseudo-heterodyne processing were used. The influence of geometric effects such as stretching, bending and twisting the interferometer on the sensitivity to refractive index changes was studied. It is shown that due to the antisymmetric nature of cladding modes in arc-induced LPGs, it is possible to tune the system sensitivity to external refractive index by simple mechanical action. The experimental results show that it is possible to tune the sensitivity to external refractive index by more than 50% by control of the curvature in the Mach-Zehnder interferometer.

2009

A fibre optic humidity sensor based on a long-period fibre grating coated with a thin film of SiO2 nanospheres

Authors
Viegas, D; Goicoechea, J; Corres, JM; Santos, JL; Ferreira, LA; Araujo, FM; Matias, IR;

Publication
MEASUREMENT SCIENCE & TECHNOLOGY

Abstract
A novel sensing configuration for measuring humidity based on a long-period fibre grating coated with a thin film of silica nanospheres is proposed. The polymeric overlay is deposited on the grating using the electrostatic self-assembly technique. This thin film changes its optical properties when exposed to different humidity levels that translate into a shift of the resonance wavelength of the fibre grating. Wavelength shifts up to 12 nm in a relative humidity range from 20% to 80% are reported, and it is further demonstrated that such humidity sensitivity has negligible thermal dependence.

  • 172
  • 241