Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Publications

Publications by CAP

2024

A field-based evaluation of portable XRF to screen for toxic metals in seafood products

Authors
Roberts, AA; Guimaraes, D; Tehrani, MW; Lin, S; Parsons, PJ;

Publication
X-RAY SPECTROMETRY

Abstract
Portable X-Ray Fluorescence (XRF) has become increasingly popular where traditional laboratory methods are either impractical, time consuming, and/or too costly. While the Limit of Detection (LOD) is generally poorer for XRF compared to laboratory-based methods, recent advances have improved XRF LODs and increased its potential for field-based studies. Portable XRF can be used to screen food products for toxic elements such as lead (Pb), cadmium (Cd), mercury (Hg), arsenic (As), manganese, (Mn), zinc (Zn), and strontium (Sr). In this study, 23 seafood samples were analyzed using portable XRF in a home setting. After XRF measurements were completed in each home, the same samples were transferred to the laboratory for re-analysis using microwave-assisted digestion and Inductively Coupled Plasma Tandem Mass Spectrometry (ICP-MS/MS). Four elements (Mn, Sr, As, and Zn) were quantifiable by XRF in most samples, and those results were compared to those obtained by ICP-MS/MS. Agreement was judged reasonable for Mn, Sr, and As, but not for Zn. Discrepancies could be due to (1) the limited time available to prepare field samples for XRF, (2) the heterogeneous nature of real samples analyzed by XRF, and (3) the small beam spot size (similar to 1 mm) of the XRF analyzer. Portable XRF is a cost-effective screening tool for public health investigations involving exposure to toxic metals. It is important for practitioners untrained in XRF spectrometry to (1) recognize the limitations of portable instrumentation, (2) include validation data for each specific analyte(s) measured, and (3) ensure personnel have some training in sample preparation techniques for field-based XRF analyses.

2024

DAS System for the Evaluation of Subsea Seismic Data from GEOLAB cable in Madeira Island

Authors
Cunha, C; Monteiro, C; Martins, H; Carrilho, F; Silva, S; Frazão, O;

Publication

Abstract
DAS technology has emerged as a transformative technology with a vast range of applications, both on land and at sea. These applications span from oil and gas exploration to geophysical data collection, infrastructure monitoring, security, and environmental hazard monitoring, including earthquake and tsunami early warning systems (Landrø et al., 2022; Gorshkov et al., 2022). The unique properties of DAS systems can bring high benefits to the demanding field of seismology, as it provides a significant increment in the spatial information that can be obtained from a seismic event. Moreover, the widespread deployment of optical fiber across the Earth's surface, coupled with the relatively low cost per monitoring point for extended distances, has rendered DAS an appealing alternative to traditional seismographs (Li et al., 2023). This is especially true for subsea applications, where the capability of remote sensing is particularly attractive. Remote sensing enables the placement of systems far from harsh environments, often difficult to access, enhancing the feasibility and effectiveness of monitoring efforts. In this work, it was employed a DAS equipment on a dark telecommunication fiber was installed exclusively for research purposes, named GEOLAB, located on the island of Madeira. This fiber spans approximately 50 km, where the initial tests were conducted using a DAS from January 31 to February 14, 2023. The equipment utilized is the HDAS provided by the IO-CSIC. The signal of the fiber was collected with a spatial resolution (or gauge length) of 10 m, resulting in total of 5000 channels, with a temporal acquisition with a frequency of 50 Hz. The DAS system has a chirped pulsed laser as the optical source, generating pulses with a width of 100 ns. These pulses were then amplified using a semiconductor optical amplifier to mitigate intra-band coherent noise. A total of 19 seismic events were detected, and then characterized by performing two-dimensional linear bandpass filtering. We will present the initial findings, particularly the seismic activity resulting from the earthquakes with epicenters near the city of Gaziantep, located in Turkey. These events occurred on February 6, 2023, with magnitudes of 7.5 and 7.8 on the Richter scale.

2024

Harnessing Parasitic Cavity as Reference for Low Coherence Systems

Authors
Robalinho, P; Rodrigues, A; Novais, S; Ribeiro, ABL; Silva, S; Frazao, O;

Publication
2024 IEEE PHOTONICS CONFERENCE, IPC 2024

Abstract
This work presents an implementation of a reference optical cavity based on parasitic cavities on a low coherence interferometric system. This method allows a maximization of the number of sensors to be implemented without occupying additional reading channels.

2023

Towards Safe Cooperative Autonomous Platoon systems using COTS Equipment

Authors
Kurunathan, H; Santos, J; Moreira, D; Santos, PM;

Publication
2023 IEEE 24TH INTERNATIONAL SYMPOSIUM ON A WORLD OF WIRELESS, MOBILE AND MULTIMEDIA NETWORKS, WOWMOM

Abstract
The domain of Intelligent Transportation Systems (ITS) is becoming a key candidate to enable safer and efficient mobility in IoT enabled smart cities. Several recent research in cooperative autonomous systems are conducted over simulation frameworks as real experiments are still too costly. In this paper, we present a platooning robotic test-bed platform with a 1/10 scale robotic vehicles that functions based on the input front commercially off the shelf technologies (COTS) such as Lidars and cameras. We also present an in-depth analysis of the functionalities and architecture of the proposed system. We also compare the performance of the aforementioned sensors in some real-life emulated scenarios. From our results, we were able to concur that the camera based platooning is able to perform well at partially observable scenarios than its counterpart.

2023

Open Source Solutions for Vulnerability Assessment: A Comparative Analysis

Authors
Cruz, DB; Almeida, JR; Oliveira, JL;

Publication
IEEE ACCESS

Abstract
As software applications continue to become more complex and attractive to cyber-attackers, enhancing resilience against cyber threats becomes essential. Aiming to provide more robust solutions, different approaches were proposed for vulnerability detection in different stages of the application life-cycle. This article explores three main approaches to application security: Static Application Security Testing (SAST), Dynamic Application Security Testing (DAST), and Software Composition Analysis (SCA). The analysis conducted in this work is focused on open-source solutions while considering commercial solutions to show contrast in the approaches taken and to better illustrate the different options available. It proposes a baseline comparison model to help evaluate and select the best solutions, using comparison criteria that are based on community standards. This work also identifies future opportunities for application security, highlighting some of the key challenges that still need to be addressed in order to fully protect against emerging threats, and proposes a workflow that combines the identified tools to be used for vulnerability assessments.

2023

Streptomyces meridianus sp. nov. isolated from brackish water of the Tagus estuary in Alcochete, Portugal

Authors
dos Santos, JD; Klimek, D; Calusinska, M; Lobo da Cunha, A; Catita, J; Goncalves, H; Gonzalez, I; Reyes, F; Lage, OM;

Publication
INTERNATIONAL JOURNAL OF SYSTEMATIC AND EVOLUTIONARY MICROBIOLOGY

Abstract
An isolation effort focused on sporogenous Actinomycetota from the Tagus estuary in Alcochete, Portugal, yielded a novel actinomycetal strain, designated MTZ3.1T, which was subjected to a polyphasic taxonomic study. MTZ3.1T is characterised by morphology typical of members of the genus Streptomyces, with light beige coloured substrate mycelium, which does not release pigments to the culture medium and with helicoidal aerial hyphae that differentiate into spores with a light- grey colour. The phylogeny of MTZ3.1T, based on the full 16S rRNA gene sequence, indicated that its closest relatives were Streptomyces alkaliterrae OF1T (98.48 %), Streptomyces chumphonensis KK1-2T (98.41 %), Streptomyces albofaciens JCM 4342T (98.34 %), Streoptomyces paromomycinus NBRC 15454T (98.34 %) and Streptomyces chrestomyceticus NRBC 13444T (98.34 %). Moreover, average nucleotide identity (ANI), average amino acid identity (AAI) and digital DNA-DNA hybridisation (dDDH) are below the species cutoff values (ANI 67.70 and 68.35 %, AAI 77.06 and 76.71 % and dDDH 22.10 and 21.50 % for S. alkaliterrae OF1T and S. chumphonensis KK1-2T, respectively). Whole genome sequencing revealed that MTZ3.1T has a genome of 5 644 485 bp with a DNA G+C content of 71.29 mol% and 5044 coding sequences. Physiologically, MTZ3.1T is strictly aerobic, able to grow at 15-37 & DEG;C, optimally at 25 & DEG;C and between pH5 and 8 and showed high salinity tolerance, growing with 0-10 %(w/v) NaCl. Major cellular fatty acids are C15:0, iso-C15:0, anteiso-C15: 0 and iso- C16:0. Furthermore, it was able to utilise a variety of nitrogen and carbon sources. Antimicrobial screening indicated that MTZ3.1T has potent anti- Staphylococcus aureus activity. On the basis of the polyphasic data, MTZ3.1T is proposed to represent a novel species, Streptomyces meridianus sp. nov. (= CECT 30416T = DSM 114037T=LMG 32463T).

  • 17
  • 241