2011
Authors
Trifanov, I; Caldas, P; Neagu, L; Romero, R; Berendt, MO; Salcedo, JAR; Podoleanu, AG; Lobo Ribeiro, ABL;
Publication
IEEE PHOTONICS TECHNOLOGY LETTERS
Abstract
Optical coherence tomography (OCT) imaging at the 1060-nm region proved to be a successful alternative in ophthalmology not only for resolving intraretinal layers, but also for enabling sufficient penetration to monitor the subretinal vasculature in the choroid when compared to most commonly used OCT imaging systems at the 800-nm region. To encourage further clinical research at this particular wavelength, we have developed a compact fiber-optic source based on amplified spontaneous emission (ASE) centered at similar to 1060 nm with similar to 70-nm spectral bandwidth at full-width at half-maximum and output power > 20 mW. Our approach is based on a combination of slightly shifted ASE emission spectra from a combination of Neodymium- and Ytterbium-doped fibers. Spectral shaping and power optimization have been achieved using in-fiber filtering schemes. We have tested the performance of the source in an OCT system optimized for this wavelength.
2011
Authors
Melo, LB; Angelo, N; Alberto, N; Marques, C; Monteiro, J; Rego, G; Caldas, P; Nogueira, R;
Publication
INTERNATIONAL CONFERENCE ON APPLICATIONS OF OPTICS AND PHOTONICS
Abstract
This paper presents a comparative study of the behaviour of different kinds of optical fibre sensors in response to high temperatures. It compares the performance of regenerated fibre Bragg gratings (FBGs) written in hydrogen-loaded and non-loaded fibres with long period gratings (LPGs) written through the two different processes of ultraviolet (UV) irradiation and electrical arc discharges. This work shows the importance of the use of hydrogen-loaded fibres to achieve regenerated FBGs capable of withstanding high temperatures as high as 955 degrees C. In addition, the results demonstrated that LPGs recorded by electric arc discharges have higher thermal resistance than LPGs written by UV radiation.
2011
Authors
Martins, HF; Marques, MB; Frazao, O;
Publication
21ST INTERNATIONAL CONFERENCE ON OPTICAL FIBER SENSORS
Abstract
A Temperature-independent strain sensor based on Four-Wave Mixing (FWM) using Raman fiber Bragg grating (FBG) laser sensor with cooperative Rayleigh scattering is proposed. Two FBG were used to form two linear cavities laser sensors based on Raman amplification combined with cooperative Rayleigh scattering. Due to the low dispersion coefficient of the fiber, it is possible to obtain the FWM using the two Raman FBG laser sensors. This configuration allows the operation as a temperature-independent strain sensor where both sensors are sensitive to temperature but only one of the FBG is sensitive to strain. The FWM efficiency is thus dependent on the applied strain but independent to the temperature.
2011
Authors
Ferreira, MS; Vieira, J; Frias, C; Frazao, O;
Publication
MEASUREMENT SCIENCE & TECHNOLOGY
Abstract
The use of fiber Bragg grating sensors embedded in hybrid composite laminates for simultaneous measurement of strain and temperature is proposed. The hybrid structure, formed by a pre-impregnated thermoset and thermoplastic composites, contains one single fiber Bragg grating embedded in each material, connected in series with each other. A different response is observed when the smart composite laminate is subjected to strain and to temperature. This is expected due to the distinct properties presented by each material. The rms deviation obtained for a temperature range between 20 and 60 degrees C is +/- 0.97 degrees C and for a strain range from 0 to 1100 mu epsilon is +/- 13.04 mu epsilon.
2011
Authors
Silva, RM; Ferreira, MS; Kobelke, J; Schuster, K; Frazao, O;
Publication
OPTICS LETTERS
Abstract
A suspended multicore fiber sensor for simultaneous measurement of curvature and strain is proposed. The spectral response shows evidences of several interferences arising from the seven cores of the fiber. Once the sensing head presents different sensitivities for curvature and strain measurements, these physical parameters can be discriminated by using the matrix method. The rms deviations are +/- 19m(-1) and +/- 12:90 mu epsilon for curvature and strain measurements, respectively. (C) 2011 Optical Society of America
2011
Authors
Martins, H; Marques, MB; Frazao, O;
Publication
OPTICS EXPRESS
Abstract
Several configurations of ultralong Raman fiber lasers (URFL) based on a distributed mirror combined with Bragg gratings or fiber loop mirrors are studied. Two continuous-wave URFL configurations, with single and cascaded cavities using fiber Bragg gratings as mirrors are explored for a 300 km long fiber. For optical sensing, the cavity length was optimized for 250 km using one of the gratings an intensity sensor. Another URFL configuration based in a fiber loop mirror is also reported. For optical sensing using a 300 km long fiber it is shown that the best choice is a hybrid configuration. The sensitivity of the FBG laser sensor range was from (76 +/- 2) x 10(-6) mu epsilon(-1) (for lower strain) to (9.0 +/- 0.4) x 10 -6 mu epsilon(-1) (for higher strain). (C) 2011 Optical Society of America
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.