Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Publications

Publications by CAP

2011

Optical fiber refractometry based on multimode interference

Authors
Frazao, O; Silva, SO; Viegas, J; Ferreira, LA; Araujo, FM; Santos, JL;

Publication
APPLIED OPTICS

Abstract
This paper presents an overview of optical fiber sensors based on multimode interference with a focus on refractometric applications. A specific configuration is presented to measure the refractive index of the surrounding liquid based on the Fresnel reflection in the fiber tip, combined with a simple interrogation technique that uses two fiber Bragg gratings as discrete optical sources, with the measurand information encoded in the relative intensity variation of the reflected signals. A resolution of 1.75 x 10(-3) RIU is achieved. (C) 2011 Optical Society of America

2011

Fiber bragg grating interrogation systems

Authors
Santos, JL; Ferreira, LA; Araujo, FM;

Publication
Fiber Bragg Grating Sensors: Recent Advancements, Industrial Applications and Market Exploitation

Abstract
Fiber Bragg Gratings are structures with remarkable characteristics that have induced new qualitative developments in the broad field of optical fiber technology, most notably in optical communications and in optical sensing. When these devices are applied for sensing, the underlying concept is the modulation of the grating Bragg wavelength by the measured and, therefore, a central issue is the sensitive and accurate conversion of the resonant wavelength into a proportional electrical signal with the adequate format for further processing. This topic is broadly known as Fiber Bragg Grating interrogation and is the subject of the present chapter. It is organized in two parts: in the first one, the techniques developed by the scientific community looking for this functionality are reviewed, with emphasis on the identification of general conceptual classes where they fit; in the second part, illustrative and state-of-the-art commercial Fiber Bragg Grating interrogation systems are described.

2011

Investigation of the long-term stability of arc-induced gratings heat treated at high temperatures

Authors
Rego, G; Caldas, P; Ivanov, O; Santos, JL;

Publication
OPTICS COMMUNICATIONS

Abstract
A long-period grating written in the SMF-28 fibre was heat treated at 1000 degrees C for 15 days. The spectrum of the grating shifted to longer wavelengths and the resonances depth decreased as a result of structural relaxation. The background loss increased considerably for times longer than 200 h, and this loss is caused by devitrification of the fibre.

2011

Comprehensive numerical analysis of a surface-plasmon-resonance sensor based on an H-shaped optical fiber

Authors
Erdmanis, M; Viegas, D; Hautakorpi, M; Novotny, S; Santos, JL; Ludvigsen, H;

Publication
OPTICS EXPRESS

Abstract
We present and numerically characterize a surface-plasmon-resonance sensor based on an H-shaped optical fiber. In our design, the two U-shaped grooves of the H-fiber are first coated with a thin gold layer and then covered by a uniform titanium dioxide layer to facilitate spectral tuning of the device. A finite element method analysis of the sensor indicates that a refractive-index resolution of up to 5.10(3) nm/RIU can be obtained. (C) 2011 Optical Society of America

2011

Non-Viral Gene Delivery to Mesenchymal Stem Cells: Methods, Strategies and Application in Bone Tissue Engineering and Regeneration

Authors
Santos, JL; Pandita, D; Rodrigues, J; Pego, AP; Granja, PL; Tomas, H;

Publication
CURRENT GENE THERAPY

Abstract
Mesenchymal stem cells (MSCs) can be isolated from several tissues in the body, have the ability to self-renewal, show immune suppressive properties and are multipotent, being able to generate various cell types. At present, due to their intrinsic characteristics, MSCs are considered very promising in the area of tissue engineering and regenerative medicine. In this context, genetic modification can be a powerful tool to control the behavior and fate of these cells and be used in the design of new cellular therapies. Viral systems are very effective in the introduction of exogenous genes inside MSCs. However, the risks associated with their use are leading to an increasing search for non-viral approaches to attain the same purpose, even if MSCs have been shown to be more difficult to transfect in this way. In the past few years, progress was made in the development of chemical and physical methods for non-viral gene delivery. Herein, an overview of the application of those methods specifically to MSCs is given and their use in tissue engineering and regenerative medicine therapeutic strategies highlighted using the example of bone tissue. Key issues and future directions in non-viral gene delivery to MSCs are also critically addressed.

2011

Optical refractometer based on large-core air-clad photonic crystal fibers

Authors
Silva, S; Santos, JL; Malcata, FX; Kobelke, J; Schuster, K; Frazao, O;

Publication
OPTICS LETTERS

Abstract
A large-core air-clad photonic crystal fiber-based sensing structure is described, which is sensitive to refractive index. The sensing head is based on multimodal interference, and relies on a single-mode/large-core air-clad photonic crystal fiber (PCF)/single-mode fiber configuration. Using two distinct large-core air-clad PCF geometries-one for refractive index measurement and the other for temperature compensation, it was possible to implement a sensing head sensitive to refractive index changes in water as induced by temperature variations. The results indicated the high sensitivity of this sensing head to refractive index variations of water, and a resolution of 3: 4 x 10(-5) refractive index units could be achieved. (C) 2011 Optical Society of America

  • 138
  • 236