2012
Authors
Culshaw, B; Lopez Higuera, JM; Matias, IR; MacPherson, WN; Santos, JL;
Publication
IEEE SENSORS JOURNAL
Abstract
2012
Authors
Frazao, O; Silva, RM; Ferreira, MS; Santos, JL; Ribeiro, ABL;
Publication
Photonic Sensors
Abstract
A brief review on suspended-core fibers for sensing applications is presented. A historical overview over the previous ten years about this special designed microstructure optical fiber is described. This fiber presents attractive optical properties for chemical/biological or gas measurement, but it can be further explored for alternative sensing solutions, namely, in-fiber interferometers based on the suspended-core or suspended-multi-core fiber, for physical parameter monitoring. © The Author(s) 2012.
2012
Authors
Tafulo, PAR; Coelho, L; Jorge, PAS; Santos, JL; Schuster, K; Kobelke, J; Frazao, O;
Publication
22ND INTERNATIONAL CONFERENCE ON OPTICAL FIBER SENSORS, PTS 1-3
Abstract
In this work, a hybrid interferometer for simultaneous measurement of the partial pressures of O-2 and CO2 mixtures is reported. The sensing head consist in two different interferometers based on a Fabry-Perot cavity and a modal interference configuration. The intrinsic FP cavity was created by splicing a single mode fiber (SMF28) with a graded index fiber section that was then subjected to chemical etching creating a cavity. The second interferometer is based on a splice of a pure silica tube in series with the Fabry-Perot. Due to the design, different sensitivities are achieved for the pressure inducing refractive index changes of each gas. The rms deviations were found to be +/- 0.079 kPa and +/- 0.029 kPa for CO2 and O-2 partial pressure measurements, respectively.
2012
Authors
Tafulo, PAR; Jorge, PAS; Santos, JL; Frazao, O;
Publication
OPTICS COMMUNICATIONS
Abstract
In this paper, two hybrid multimode/single mode fiber Fabry-Perot (FP) cavities were compared. The cavities fabricated by chemical etching are presented as high temperature and strain sensors. In order to produce this FP cavity a single mode fiber was spliced to a graded index multimode fiber with 62.5 mu m core diameter. The Fabry-Perot cavities were tested as a high temperature sensor in the range between room temperature and 700 C and as strain sensors. A reversible shift of the interferometric peaks with temperature allowed to estimate a sensitivity of 0.75 +/- 0.03 pm/degrees C and 0.98 +/- 0.04 pm/degrees C for the sensor A and B respectively. For strain measurement sensor A demonstrated a sensitivity of 1.85 +/- 0.07 pm/mu and sensor B showed a sensitivity of 3.14 +/- 0.05 pm/mu. The sensors demonstrated the feasibility of low cost fiber optic sensors for high temperature and strain.
2012
Authors
Ferreira, MS; Schuster, K; Kobelke, J; Santos, JL; Frazao, O;
Publication
OPTICS LETTERS
Abstract
A spatial optical filter based on a hollow-core silica tube is proposed. Because of the hollow-core dimensions, it is possible to obtain a periodical spatial filter ranging from 1200 to 1700 nm with a channel spacing of 2.64 THz. The bandwidth is approximately 5.32 nm, and the isolation loss is similar to 30 dB. The optical losses are approximately similar to 0.67 dB/mm for a wavelength of 1500 nm. The 40 mm long spatial optical filter is tested as a sensing element and subjected to different physical parameters. The spatial optical filter is wavelength sensitive to strain and temperature, while for refractive-index variations there is an optical power dependency. This fiber structure can be used as a sensing element for extreme conditions, such as in very high temperature environments, where it presents a sensitivity of 27.5 pm degrees C-1. (C) 2012 Optical Society of America
2012
Authors
Ferreira, MS; Bierlich, J; Kobelke, J; Schuster, K; Santos, JL; Frazao, O;
Publication
OPTICS EXPRESS
Abstract
A high sensitivity Fabry-Perot (FP) strain sensor based on hollow-core ring photonic crystal fiber was investigated. A low-finesse FP cavity was fabricated by splicing a section of hollow-core ring photonic crystal fiber between two standard single mode fibers. The geometry presents a low cross section area of silica enabling to achieve high strain sensitivity. Strain measurements were performed by considering the FP cavity length in a range of 1000 mu m. The total length of the strain gauge at which strain was applied was also studied for a range of 900 mm. The FP cavity length variation highly influenced the strain sensitivity, and for a length of 13 mu m a sensitivity of 15.4 pm/mu epsilon was attained. Relatively to the strain gauge length, its dependence to strain sensitivity is low. Finally, the FP cavity presented residual temperature sensitivity (similar to 0.81 pm/degrees C). (C) 2012 Optical Society of America
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.