2013
Authors
Queiros, RB; Gouveia, C; Fernandes, JRA; Jorge, PAS;
Publication
FIFTH EUROPEAN WORKSHOP ON OPTICAL FIBRE SENSORS
Abstract
An evanescent wave fiber optic sensor for detection of E. coli outer membranes proteins (EcOMPs) is presented. The sensing probe is achieved by the functionalization of a Long Period Grating (LPG) inscribed in a single mode fiber (SMF28) with poly-L-lysine (PLL) resulting in a label-free configuration capable of specific recognition of EcOMPs in waters due to the resonance wavelength shift variation owing to refractive index changes of the medium (approximate to 100 nm/RIU). The sensing head was characterized and tested against EcOMP and applied to spiked environmental water samples. The sensor displayed linear responses in the range of 1x10(-10) M to 1x10(-8) M EcOMP and is regenerated (under low pH conditions) and the deviation of the subsequent detection was less than 0.1 %.
2013
Authors
Brigida, ACS; Nascimento, IM; Mendonca, S; Costa, JCWA; Martinez, MAG; Baptista, JM; Jorge, PAS;
Publication
Photonic Sensors
Abstract
A magneto-optical sensor, using a dual quadrature polarimetric processing scheme, was evaluated for current metering and protection applications in high voltage lines. Sensor calibration and resolution were obtained in different operational conditions using illumination in the 1550-nm band. Results obtained indicated the feasibility of interrogating such sensor via the optical ground wire (OPGW) link installed in standard high power grids. The polarimetric bulk optical current sensor also was theoretically studied, and the effects of different sources of error considering practical deployment were evaluated. In particular, the interference from external magnetic fields in a tree-phase system was analyzed. © 2012 The Author(s).
2013
Authors
Gouveia, C; Zibaii, M; Latifi, H; Marques, MJB; Baptista, JM; Jorge, PAS;
Publication
SENSORS AND ACTUATORS B-CHEMICAL
Abstract
In this work a fiber optic interferometric system for differential refractive index measurement is described. The system is based on a white light Mach-Zehnder configuration, with serrodyne phase modulation, used to interrogate two similar non-adiabatic tapered optical fiber sensors in a differential scheme. In this situation the system is able to measure the refractive index independent of temperature. Signal processing with low cost digital instrumentation developed in Labview environment allows a detectable change in refractive index of Delta n approximate to 1.46 x 10(-6), which is, from the best of our knowledge the highest resolution achieved using a bare fiber taper device for a range of refractive index close to the water index. The results demonstrate the potential of the proposed scheme to operate as a self-referenced chemical and biological sensing platform.
2013
Authors
Queiros, RB; Gouveia, C; Fernandes, JRA; Marques, PVS; Noronha, JP; Sales, MGF; Jorge, PAS;
Publication
8TH IBEROAMERICAN OPTICS MEETING AND 11TH LATIN AMERICAN MEETING ON OPTICS, LASERS, AND APPLICATIONS
Abstract
A Long Period Grating (LPG)-based platform for the detection of E. coli outer membranes proteins (EcOMPs) is presented. The sensing probe is achieved by the functionalization of a LPG inscribed in a single mode fiber (SMF28) with a DNA-aptamer resulting in a label-free configuration capable of specific recognize EcOMPs in waters. Measurement takes place by tracking the variations induced in the resonance wavelength by the refractive index changes at the fiber surface (approximate to 100 nm/RIU). The sensing head was characterized and tested against EcOMPs and applied to spiked environmental water samples. The sensor displayed logarithmic responses in the range of 0.1 nM to 10 nM EcOMPs and is regenerated (under low pH conditions) and the deviation of the subsequent detection was less than 0.1%.
2013
Authors
Ribeiro, RSR; Jorge, PAS; Guerreiro, A;
Publication
8TH IBEROAMERICAN OPTICS MEETING AND 11TH LATIN AMERICAN MEETING ON OPTICS, LASERS, AND APPLICATIONS
Abstract
The intensity profile of a focused beam of light can exert small drift forces on particles with a few microns and even smaller, which can be used to confine or manipulate them. Optical trapping has several applications, in particular it has been adopted as a powerful tool in biology, allowing, for instance to manipulate in vivo single cells. A wide variety of optical setups have been implemented to optically trap microscopic bodies, however, the single beam trap using a tightly focused Gaussian beam continues to be the most used. Recent developments introduced an alternative to bulk optical trapping systems based on lensed optical fibers. This work presents simulations showing new designs of fiber optic and 2D waveguide tweezers based on studies of the forces acting on dielectric particles immersed in media with a distinct refractive index, which take into account the refractive index and structure of the particles.
2013
Authors
Ribeiro, RSR; Guerreiro, A; Ecoffet, C; Soppera, O; Jorge, PAS;
Publication
FIFTH EUROPEAN WORKSHOP ON OPTICAL FIBRE SENSORS
Abstract
This paper presents a study of optical forces acting on dielectric particles in media of distinct refractive index. The radiation pressure forces produced by optical tweezers are calculated using the finite difference time domain method as well as the Lorentz force on electric dipoles. The model considers a 2-dimension structure composed of a waveguide and a dielectric microparticle. Furthermore, the paper presents preliminary experimental results concerning the implementation of fiber optical tweezers system based on polymeric lensed fibers.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.