Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Publications

Publications by CAP

2014

Fiber Optical Beam Shaping Using Polymeric Structures

Authors
Rodrigues Ribeiro, RSR; Queiros, RB; Guerreiro, A; Ecoffet, C; Soppera, O; Jorge, PAS;

Publication
23RD INTERNATIONAL CONFERENCE ON OPTICAL FIBRE SENSORS

Abstract
A method to control the output intensity profile of optical fibers is presented. Using guided wave photo-polymerization in multimode structures the fabrication with modal assisted shaping of polymeric micro lenses is demonstrated. Results showing that a given linear polarized mode can be selectively excited controlling the intensity distribution at the fiber tip are presented. This pattern is then reproduced in the polymeric micro structure fabricated at the fiber tip thus modulating its output intensity distribution. Such structures can therefore be used to obtain at the fiber tip predetermined intensity patterns for attaining optical trapping or patterned illumination.

2014

Rapid fabrication of polymeric micro lenses for optical fiber trapping and beam shaping

Authors
Ribeiro, RSR; Queiros, RB; Ecoffet, C; Soppera, O; Oliva, A; Guerreiro, A; Jorge, PAS;

Publication
OPTICAL TRAPPING AND OPTICAL MICROMANIPULATION XI

Abstract
This work reports a new type of optical fiber tweezers based on polymeric micro-lenses. The lenses are achieved by means of an economical and fast fabrication process, using an in-fiber photo-polymerization technique. The polymerization radiation is guided towards the fiber tip creating a polymeric waveguide. The method allows tailoring the geometry of the tip by adjusting the fabrication parameters. Furthermore, more complex shapes can be fabricated by exploring modal effects at the polymerization/trapping wavelengths, which can be used for different applications such as trapping, beam shaping and patterned illumination.

2014

Remote curvature fiber sensors using core mismatch structures and OTDR based interrogation

Authors
Fernandes, CS; Rocco Giraldi, MTMR; Gouveia, CJ; Sousa, MJ; Costa, JCWA; Frazao, O; Jorge, PAS;

Publication
SECOND INTERNATIONAL CONFERENCE ON APPLICATIONS OF OPTICS AND PHOTONICS

Abstract
In this work, a remote curvature sensor using a standard OTDR as the interrogation system is presented. This approach uses a core diameter mismatch sensor which is formed by a short section of a multimode fiber, with a length of 3 mm, sandwiched between two singlemode fibers. In this case, the attenuation of the optical signal will vary as the fiber is bent allowing interrogating the sensor with OTDR technology. Preliminary results indicate a resolution range of similar to 0.0003 cm(-1), sensitivity in the range of similar to-208.46 dB/cm(-1) and a variation of 2.67 dB in the OTDR trace within the bend radius range.

2014

SPR sensors in POF: a new experimental configuration for extended refractive index range and better SNR

Authors
Cennamo, N; Coelho, L; Guerreiro, A; Jorge, PAS; Zeni, L;

Publication
23RD INTERNATIONAL CONFERENCE ON OPTICAL FIBRE SENSORS

Abstract
In this work we present a new low cost SPR (Surface Plasmon Resonance) sensor configuration based on efficient higher-order mode filtering in plastic multimode fibers, using a tapered POF (Plastic Optical Fiber) after the sensor system, without decreasing the sensitivity of the sensor. In particular, we present the experimental results obtained with this new configuration. The experimental results have shown as the tapered POF after the sensor system influences the performances in terms of refractive index range and Signal-to-Noise Ratio (SNR).

2014

Analysis of a fibre-optic sensor design based on SPR in nanowire metamaterial films

Authors
Leite, IT; Fernandes, P; Hierro Rodriguez, A; Teixeira, JM; Jorge, PAS; Guerreiro, A;

Publication
23RD INTERNATIONAL CONFERENCE ON OPTICAL FIBRE SENSORS

Abstract
This paper investigates numerically the performance of a design for an optical sensor of the refractive index of gases and liquids based on smart or functional metamaterial films (smart optical metamembranes).

2014

SELF REFERENCED LABEL FREE BIOSENSORS BASED ON DIFFERENTIAL FIBER OPTIC INTERFEROMETRY

Authors
Queiros, RB; Gouveia, C; Martins, MCL; Jorge, PAS;

Publication
OPTICAL FIBERS AND SENSORS FOR MEDICAL DIAGNOSTICS AND TREATMENT APPLICATIONS XIV

Abstract
The measurement of refractive index (RI) is an important tool for label free biosensing in biomedical applications [1,2]. In this work, a LPG based fiber optic interferometric probe is used for thrombin detection. The aptamer raised against the thrombin was immobilized through an electrostatic immobilization method, using poly-L-lysine as cationic polymer. The functionalized probe was characterized and tested against thrombin. The system was validated with the detection of thrombin using an aptamer based probe (5'-[ amine]GGTTGGTGTGGTTGG-3') as a model system for protein detection. The shift corresponding to the affinity-assay between TBA and the thrombin was of about 56 pm. A differential readout interferometer based on a white light Mach-Zehnder configuration, with pseudo-heterodyne phase modulation is described. The system can be used to interrogate two similar LPGs based interferometers in a differential scheme. Considering the configuration where both devices are functionalized being one active (sensor) and the other one passive ( reference) it is possible to accurately measure the behavior of the analyte of interest independent of non-specific binding events, bulk refractive index changes and temperature. Signal processing with low cost digital instrumentation developed in Labview environment allows a detectable change in refractive index of Delta n approximate to 2x10(6) [3]. Coupling the sensing probe together with a passively functionalized reference probe in a differential system will enable pseudo-heterodyne interrogation and extremely sensitive phase detection of biological species.

  • 109
  • 241