Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Publications

Publications by CAP

2014

Behavior of a hollow core photonic crystal fiber under high radial pressure for downhole application

Authors
Sadeghi, J; Latifi, H; Santos, JL; Chenari, Z; Ziaee, F;

Publication
APPLIED PHYSICS LETTERS

Abstract
Pressure fiber sensors play an important role in downhole high pressure measurements to withstand long term operation. The purpose of this paper is to present an application of hollow core photonic crystal fiber (HC-PCF) as a high pressure sensor head for downhole application based on dispersion variation. We used a high pressure stainless steel unit to exert pressure on the sensor. The experimental results show that different wavelengths based on sagnac loop interferometer have additive sensitivities from 5 x 10(-5) nm/psi at 1480 nm to 1.3 x 10(-3) nm/psi at 1680 nm. We developed a simulation to understand the reason for difference in sensitivity of wavelengths and also the relationship between deformation of HC-PCF and dispersion variation under pressure. For this purpose, by using the finite element method, we investigated the effect of structural variation of HC-PCF on spectral transformation of two linear polarizations under 1000 psi pressure. The simulation and experimental results show exponential decay behavior of dispersion variation from -3.4 x 10(-6) 1/psi to -1.3 x 10(- 6) 1/psi and from -5 x 10(-6) 1/psi to -1.8 x 10(-6) 1/psi, respectively, which were in a good accordance with each other. (C) 2014 AIP Publishing LLC.

2014

Phase-shifted fiber Bragg grating for strain measurement at extreme conditions

Authors
Ferreira, MS; Lee, GCB; Santos, JL; Sugden, K; Frazão, O;

Publication
Optical Sensors, 2014

Abstract
In this work, a phase-shifted fiber Bragg grating is proposed for strain sensing at extreme temperatures. The grating structure is written in bare standard single mode fiber, using the point-by-point femtosecond laser technique. Strain measurements are performed at temperatures ranging from room temperature up to 900°C. By subjecting the sensor to such extreme conditions, the wavelength of the grating increases. © 2014 OSA.

2014

An Adjustable Sensor Platform Using Dual Wavelength Measurements For Optical Colorimetric Sensitive Films

Authors
Machado, C; Gouveia, C; Ferreira, J; Kovacs, B; Jorge, P; Lopes, L;

Publication
2014 IEEE SENSORS

Abstract
We present a new and versatile sensor platform to readout the response of sensitive colorimetric films. The platform is fully self-contained and based on a switched dual-wavelength scheme. After filtering and signal processing, the system is able to provide self-referenced measures of color intensity changes in the film, while being immune to noise sources such as ambient light and fluctuations in the power source and in the optical path. By controlling the power and the switching frequency between the two wavelengths it is possible to fine tune the output gain as well as the operational range of the sensor for a particular application, thus improving the signal conditioning. The platform uses a micro-controller that complements the analog circuit used to acquire the signal. The latter pre-amplifies, filters and conditions the signal, leaving the micro-controller free to perform sensor linearization and unit conversion. By changing the sensitive film and the wavelength of the light source it is possible to use this platform for a wide range of sensing applications.

2014

TEC4SEA-A Modular Platform for Research, Test and Validation of Technologies Supporting a Sustainable Blue Economy

Authors
Monica, P; Martins, A; Olivier, A; Matos, A; Almeida, JM; Cruz, N; Alves, JC; Salgado, H; Pessoa, L; Jorge, P; Campos, R; Ricardo, M; Pinho, C; Silva, A; Jesus, S; Silva, E;

Publication
2014 OCEANS - ST. JOHN'S

Abstract
This paper presents the TEC4SEA research infrastructure created in Portugal to support research, development, and validation of marine technologies. It is a multidisciplinary open platform, capable of supporting research, development, and test of marine robotics, telecommunications, and sensing technologies for monitoring and operating in the ocean environment. Due to the installed research facilities and its privileged geographic location, it allows fast access to deep sea, and can support multidisciplinary research, enabling full validation and evaluation of technological solutions designed for the ocean environment. It is a vertically integrated infrastructure, in the sense that it possesses a set of skills and resources which range from pure conceptual research to field deployment missions, with strong industrial and logistic capacities in the middle tier of prototype production. TEC4SEA is open to the entire scientific and enterprise community, with a free access policy for researchers affiliated with the research units that ensure its maintenance and sustainability. The paper describes the infrastructure in detail, and discusses associated research programs, providing a strategic vision for deep sea research initiatives, within the context of both the Portuguese National Ocean Strategy and European Strategy frameworks.

2014

Evanescent wave DNA-aptamer biosensor based on long period gratings for the specific recognition of E. coli outer membrane proteins

Authors
Queiros, RB; Gouveia, C; Fernandes, JRA; Jorge, FAS;

Publication
BIOSENSORS & BIOELECTRONICS

Abstract
An evanescent wave fiber optic sensor for detection of Escherichia coli (E. coli) outer membranes proteins (EcOMPs) using long period gratings (LPGs) as a refractometric platform is presented. The sensing probes were attained by the functionalization of LPGs inscribed in single mode fiber using two different methods of immobilization; electrostatic assembly and covalent binding. The resulting label-free configuration enabled the specific recognition of EcOMPs in water by monitoring the resonance wavelength shift due to refractive index changes induced by binding events. The sensors displayed linear responses in the range of 0.1 nM to 10 nM EcOMPs with sensitivities of -0.1563 +/- 0.005 nm decade(-1) [EcOMP, M] (electrostatic method) and -0.1597 +/- 0.004 nm decade(-1) [EcOMP, M] (covalent method). The devices could be regenerated (under low pH conditions) with a deviation less than 0.1% for at least three subsequent detection events. The sensors were also applied to spiked environmental water samples.

2014

Fabrication and characterization of spun HiBi PCF fibers for current sensing applications

Authors
Nascimento, IM; Chesini, G; Brigida, ACS; Hayashi, JG; Baptista, JM; Costa, JCWA; Martinez, MAG; Jorge, PAS; Cordeiro, CMB;

Publication
23RD INTERNATIONAL CONFERENCE ON OPTICAL FIBRE SENSORS

Abstract
In this paper three highly birefringent (HiBi) spun photonic crystal fibers (PCF) are fabricated and their performance are characterized for electrical current measurement. These fibers are tested by coiling them around an electric conductor using three distinct winding diameters with different turns. The results present a very good linear relation with the current and its sensitivity depends on the winding diameter and on the number of turns. For the larger winding diameter, the fiber with lower circular pitch had higher sensitivity and for the smaller winding diameter the best sensitivity result was for the fiber with higher circular pitch.

  • 108
  • 241