Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Publications

Publications by CAP

2014

Analysis of Phase Interrogated SPR Fiber Optic Sensors With Bimetallic Layers

Authors
Moayyed, H; Leite, IT; Coelho, L; Santos, JL; Viegas, D;

Publication
IEEE SENSORS JOURNAL

Abstract
An effective analytical model combining geometrical optics with the transfer-matrix theory for stratified optical media is applied to investigate the sensing properties of tapered optical fiber surface plasmon resonance (SPR) sensors incorporating Ag-Au bimetallic layers, particularly in the context of phase interrogation. The performance of the sensing structures is studied as a function of the tapering parameters and thickness of the metallic layers. It is shown that the Ag-Au bimetallic combination is capable of improving the resolution and tuning working region of SPR fiber-optic sensors and that by tapering the sensing structures enhanced sensitivity can be achieved when phase interrogation is considered.

2014

Analysis of Phase Interrogated SPR Fiber Optic Sensors with Different Bimetallic Combinations

Authors
Moayyed, H; Leite, IT; Coelho, L; Santos, JL; Guerreiro, A; Viegas, D;

Publication
SECOND INTERNATIONAL CONFERENCE ON APPLICATIONS OF OPTICS AND PHOTONICS

Abstract
Optical fiber sensors based on the phenomenon of plasmonic resonance can be interrogated applying different methods, the most common one being the spectral approach where the measurand information is derived from the reading of the wavelength resonance dip. In principle, a far better performance can be achieved considering the reading of the phase of the light at a specific wavelength located within the spectral plasmonic resonance. This approach is investigated in this work for surface plasmon based fiber optic sensors with overlays which are combinations of bimetallic layers, permitting not only to tune the wavelength of the plasmon resonance but also the sensitivity associated with the phase interrogation of the sensors. The metals considered for the present analysis are silver, gold, copper, and aluminum.

2014

Silica microspheres array strain sensor

Authors
Ferreira, MS; Santos, JL; Frazao, O;

Publication
OPTICS LETTERS

Abstract
An optical fiber sensor based on arrays of silica microspheres is proposed. The microspheres are produced separately using a fusion splicer and then also connected in series by fusion splicing. Three different sensors are presented, differing by the number of microspheres. Due to the geometry of the structures, different behaviors are obtained in strain measurements. Sensors with an odd number of microspheres are more sensitive to strain than the ones with an even number of microspheres. Additionally, the sensing heads are subjected to temperature where a sensitivity of 20.3 pm/degrees C is obtained in a range of 200 degrees C. (C) 2014 Optical Society of America

2014

Simultaneous strain and temperature measure based on a single suspended core photonic crystal fiber

Authors
Rota Rodrigo, S; Lopez Amo, M; Kobelke, J; Schuster, K; Santos, JL; Frazao, O;

Publication
23RD INTERNATIONAL CONFERENCE ON OPTICAL FIBRE SENSORS

Abstract
In this work a simultaneous strain and temperature sensor based on a suspended core fiber is proposed. The sensor comprises a 3mm suspended core PCF between SMFs and is based on the combination of two multimodal interferences with different frequency fringe patterns. The interference of the both signal has different sensitivity responses to strain and temperature. Thought a low-pass frequency filtering of the detected spectrum, the wavelength shift of the two interferences can be measured allowing the discrimination of strain and temperature simultaneously. The resolutions of this sensor are 0.45 degrees C and 4.02 mu epsilon.

2014

Reflection-Based Phase-Shifted Long-Period Fiber Grating for Cryogenic Temperature Measurements

Authors
Martins, R; Monteiro, J; Caldas, P; Santos, JL; Rego, G;

Publication
23RD INTERNATIONAL CONFERENCE ON OPTICAL FIBRE SENSORS

Abstract
In this work, we propose a compact sensor head to perform cryogenic temperature measurements based on a long-period fiber grating. The presented configuration enables the sensor to be interrogated in reflection since a phase-shifted is produced by Fresnel reflection on the end-face of the fiber, cleaved at a quarter-period separation distance from the end of the grating.

2014

Fiber Optic Sensing System for Monitoring of Coal Waste Piles in Combustion

Authors
Viveiros, D; Ribeiro, J; Carvalho, JP; Ferreira, J; Pinto, AMR; Perez Herrera, RA; Diaz, S; Lopez Gil, A; Dominguez Lopez, A; Esteban, O; Martins, HF; Martin Lopez, S; Baierl, H; Auguste, JL; Jamier, R; Rougier, S; Santos, JL; Flores, D; Roy, P; Gonzalez Herraez, M; Lopez Amo, M; Baptista, JM;

Publication
23RD INTERNATIONAL CONFERENCE ON OPTICAL FIBRE SENSORS

Abstract
The combustion of coal wastes resulting from mining is of particular environmental concern and therefore the importance of the proper management involving real-time assessment of their status and identification of probable evolution scenarios is recognized. Continuous monitoring of combustion temperature and emission levels of certain gases opens the possibility to plan corrective actions to minimize their negative impact in the surroundings. Optical fiber technology is well-suited to this purpose and in this work it is described the main attributes of a fiber optic sensing system projected to gather data on distributed temperature and gas emission in these harsh environments.

  • 107
  • 241