Cookies Policy
We use cookies to improve our site and your experience. By continuing to browse our site you accept our cookie policy. Find out More
Close
  • Menu
About

About

Susana Silva is graduated in Applied Physics from the University of Porto, Portugal. She received the Ph.D. degree in Physics at the University of Porto, Portugal, on optical fiber sensors for refractive index and gas sensing. She is currently an R&D Researcher at the Center for Applied Photonics at INESC TEC. In the last few years, S. Silva has published more than 50 papers in international journals. S. Silva received the prize for best PhD Theses in Optics and Photonics of 2013. Her field of expertise is the fabrication of optical fiber sensors for monitoring of physical parameters. Her current research interests are optical sensors for biomedical applications and distributed fiber optic sensing for biodiversity applications.

Interest
Topics
Details

Details

001
Publications

2019

High sensitivity strain sensor based on twin hollow microspheres

Authors
Monteiro, CS; Kobelke, J; Schuster, K; Bierlich, J; Silva, SO; Frazao, O;

Publication
MICROWAVE AND OPTICAL TECHNOLOGY LETTERS

Abstract
A sensor based on 2 hollow core microspheres is proposed. Each microsphere was produced separately through fusion splicing and then joined. The resultant structure is a Fabry-Perot interferometer with multiple interferences that can be approximated to a 4-wave interferometer. Strain characterization was attained for a maximum of 1350 mu epsilon, achieving a linear response with a sensitivity of 3.39 +/- 0.04 pm/mu epsilon. The fabrication technique, fast and with no chemical hazards, as opposed to other fabrication techniques, makes the proposed sensor a compelling solution for strain measurements in hash environments.

2019

Bi-core optical fiber for sensing o temperature, strain and torsion

Authors
Lobo Ribeiro, ABL; Silva, SFO; Frazao, O; Santos, JL;

Publication
MEASUREMENT SCIENCE AND TECHNOLOGY

Abstract
Bi-core optical fiber structures are studied for applications in sensing. In this paper, an analysis is performed on the spectral characteristics of light propagating in these fibers with central launching core illumination from a standard single mode fiber. Reflective and transmissive configurations are addressed. The characteristics of a reflective bi-core fiber structure for measurement of strain, temperature and absolute value of torsion are investigated and highlights for further research are presented.

2019

A Self-Referencing Intensity-Based Fabry–Perot Cavity for Curvature Measurement

Authors
Novais, S; Silva, SO; Frazao, O;

Publication
IEEE Sensors Letters

Abstract

2019

Curvature detection in a medical needle using a Fabry-Perot cavity as an intensity sensor

Authors
Novais, S; Silva, SO; Frazão, O;

Publication
Measurement: Journal of the International Measurement Confederation

Abstract
The use of optical sensors inside the needle can improve targeting precision and can bring real-time information about the location of the needle tip if necessary, since a needle bends through insertion into the tissue. Therefore, the precise location of the needle tip is so important in percutaneous treatments. In the current experiment, a fiber sensor based on a Fabry-Perot (FP) cavity is described to measure the needle curvature. The sensor is fabricated by producing an air bubble between two sections of multimode fiber. The needle with the sensor therein was attached at one end and deformed by the application of movements. The sensor presents a sensitivity of -0.152 dB/m-1 to the curvature measurements, with a resolution of 0.089 m-1. The sensory structure revealed to be stable, obtaining a cross-sensitivity to be 0.03 m-1/°C. © 2019 Elsevier Ltd

2019

Fabry-Perot cavity for curvature measurement in a medical needle

Authors
Novais, S; Silva, SO; Frazão, O;

Publication
Proceedings of SPIE - The International Society for Optical Engineering

Abstract
A reflective fiber optic sensor based on a Fabry-Perot cavity made by splicing two sections of multimode fiber is demonstrated to measure the needle curvature. The sensing structure was incorporated into a medical needle and characterized for curvature and temperature measurements. The maximum sensitivity of-0.152dB/m-1 was obtained to the curvature measurements, with a resolution of 0.089m-1. When subjected to temperature, the sensing head presented a low temperature sensitivity, which resulted in a small cross-sensitivity. © COPYRIGHT SPIE. Downloading of the abstract is permitted for personal use only.