Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Interest
Topics
Details

Details

  • Name

    Sónia Carvalho Teixeira
  • Role

    Research Assistant
  • Since

    01st April 2015
Publications

2025

Fairness Analysis in Causal Models: An Application to Public Procurement

Authors
Teixeira, S; Nogueira, AR; Gama, J;

Publication
MACHINE LEARNING AND PRINCIPLES AND PRACTICE OF KNOWLEDGE DISCOVERY IN DATABASES, ECML PKDD 2023, PT II

Abstract
Data-driven decision models based on Artificial Intelligence (AI) have been widely used in the public and private sectors. These models present challenges and are intended to be fair, effective and transparent in public interest areas. Bias, fairness and government transparency are aspects that significantly impact the functioning of a democratic society. They shape the government's and its citizens' relationship, influencing trust, accountability, and the equitable treatment of individuals and groups. Data-driven decision models can be biased at several process stages, contributing to injustices. Our research purpose is to understand fairness in the use of causal discovery for public procurement. By analysing Portuguese public contracts data, we aim i) to predict the place of execution of public contracts using the PC algorithm with sp-mi, smc-chi(2) and mc-chi(2) conditional independence tests; ii) to analyse and compare the fairness in those scenarios using Predictive Parity Rate, Proportional Parity, Demographic Parity and Accuracy Parity metrics. By addressing fairness concerns, we pursue to enhance responsible data-driven decision models. We conclude that, in our case, fairness metrics make an assessment more local than global due to causality pathways. We also observe that the Proportional Parity metric is the one with the lowest variance among all metrics and one with the highest precision, and this reinforces the observation that the Agency category is the one that is furthest apart in terms of the proportion of the groups.

2025

A Multidimensional Approach to Ethical AI Auditing

Authors
Teixeira, S; Cortés, A; Thilakarathne, D; Gori, G; Minici, M; Bhuyan, M; Khairova, N; Adewumi, T; Bhuyan, D; O'Keefe, J; Comito, C; Gama, J; Dignum, V;

Publication
Proceedings of the AAAI/ACM Conference on AI, Ethics, and Society

Abstract
The increasing integration of Artificial Intelligence (AI) across various sectors of society raises complex ethical challenges requiring systematic and scalable oversight mechanisms. While tools such as AIF360 and Aequitas address specific dimensions, namely fairness, there remains a lack of comprehensive frameworks capable of auditing multiple ethical principles simultaneously. This paper introduces a multidimensional AI auditing tool designed to evaluate systems across key dimensions: fairness, explainability, robustness, transparency, bias, sustainability, and legal compliance. Unlike existing tools, our framework enables simultaneous assessment of these dimensions, supporting more holistic and accountable AI deployment. We demonstrate the tool’s applicability through use cases and discuss its implications for building trust and aligning AI development with fundamental ethical standards.

2025

Strategic Alliances in NetLogo: A Flocking Algorithm with Reinforcement Learning

Authors
Teixeira, S; Campos, P;

Publication
Machine Learning Perspectives of Agent-Based Models

Abstract

2023

Ethical and Technological AI Risks Classification: A Human Vs Machine Approach

Authors
Teixeira, S; Veloso, B; Rodrigues, JC; Gama, J;

Publication
MACHINE LEARNING AND PRINCIPLES AND PRACTICE OF KNOWLEDGE DISCOVERY IN DATABASES, ECML PKDD 2022, PT I

Abstract
The growing use of data-driven decision systems based on Artificial Intelligence (AI) by governments, companies and social organizations has given more attention to the challenges they pose to society. Over the last few years, news about discrimination appeared on social media, and privacy, among others, highlighted their vulnerabilities. Despite all the research around these issues, the definition of concepts inherent to the risks and/or vulnerabilities of data-driven decision systems is not consensual. Categorizing the dangers and vulnerabilities of data-driven decision systems will facilitate ethics by design, ethics in design and ethics for designers to contribute to responsibleAI. Themain goal of thiswork is to understand which types of AI risks/ vulnerabilities are Ethical and/or Technological and the differences between human vs machine classification. We analyze two types of problems: (i) the risks/ vulnerabilities classification task by humans; and (ii) the risks/vulnerabilities classification task by machines. To carry out the analysis, we applied a survey to perform human classification and the BERT algorithm in machine classification. The results show that even with different levels of detail, the classification of vulnerabilities is in agreement in most cases.

2023

Data Sets: Examples and Access for Civic Statistics

Authors
Teixeira S.; Campos P.; Trostianitser A.;

Publication
Statistics for Empowerment and Social Engagement: Teaching Civic Statistics to Develop Informed Citizens

Abstract
Citizens are more and more encouraged to participate in public policy decision processes and, therefore, critical questions regarding our lives are asked every day. Informed citizens need access to data, and knowledge in order to explore, understand, and reason about information of a multivariate nature; it is not obvious how to access such data, or how to work with them. Educators face the challenge of adopting new approaches, and grasping new opportunities in order to support the development of students into informed citizens as adults. Educators often do not have time to locate information sources; moreover, it is a challenge to exploit the possibilities of open data wisely. This chapter points to data sets we have found valuable in teaching Civic Statistics; data must be authentic, and reflect the complexities of data used to inform decision making about social issues (whose features are explained in Chap. 2). Topics include refugees, malnutrition, and climate change. We provide enough details so teachers can locate and employ these data sets, or similar ones, as part of regular instruction. Information is made accessible using the innovative tool CivicStatMap, developed to provide access to teaching materials, along with data and analysis tools, including tools to support data visualisation.