Details
Name
Rui Pedro NascimentoRole
Research AssistantSince
01st September 2022
Nationality
PortugalCentre
Robotics in Industry and Intelligent SystemsContacts
+351222094171
rui.p.nascimento@inesctec.pt
2025
Authors
Nascimento, R; Rocha, CD; Gonzalez, DG; Silva, T; Moreira, R; Silva, MF; Filipe, V; Rocha, LF;
Publication
INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY
Abstract
The growing demand for high-quality components in various industries, particularly in the automotive sector, requires advanced and reliable inspection methods to maintain competitive standards and support innovation. Manual quality inspection tasks are often inefficient and prone to errors due to their repetitive nature and subjectivity, which can lead to attention lapses and operator fatigue. The inspection of reflective aluminum parts presents additional challenges, as uncontrolled reflections and glare can obscure defects and reduce the reliability of conventional vision-based methods. Addressing these challenges requires optimized illumination strategies and robust image processing techniques to enhance defect visibility. This work presents the development of an automated optical inspection system for reflective parts, focusing on components made of high-pressure diecast aluminum used in the automotive industry. The reflective nature of these parts introduces challenges for defect detection, requiring optimized illumination and imaging methods. The system applies deep learning algorithms and uses dome light to achieve uniform illumination, enabling the detection of small defects on reflective surfaces. A collaborative robotic manipulator equipped with a gripper handles the parts during inspection, ensuring precise positioning and repeatability, which improves both the efficiency and effectiveness of the inspection process. A flow execution-based software platform integrates all system components, enabling seamless operation. The system was evaluated with Schmidt Light Metal Group using three custom datasets to detect surface porosities and inner wall defects post-machining. For surface porosity detection, YOLOv8-Mosaic, trained with cropped images to reduce background noise, achieved a recall value of 84.71% and was selected for implementation. Additionally, an endoscopic camera was used in a preliminary study to detect defects within the inner walls of holes. The industrial trials produced promising results, demonstrating the feasibility of implementing a vision-based automated inspection system in various industries. The system improves inspection accuracy and efficiency while reducing material waste and operator fatigue.
2025
Authors
Nascimento, R; Ferreira, T; Rocha, CD; Filipe, V; Silva, MF; Veiga, G; Rocha, LF;
Publication
J. Intell. Robotic Syst.
Abstract
Quality inspection inspection systems are critical for maintaining product integrity. Being a repetitive task, when performed by operators only, it can be slow and error-prone. This paper introduces an automated inspection system for quality assessment in casting aluminum parts resorting to a robotic system. The method comprises two processes: filing detection and hole inspection. For filing detection, five deep learning modes were trained. These models include an object detector and four instance segmentation models: YOLOv8, YOLOv8n-seg, YOLOv8s-seg, YOLOv8m-seg, and Mask R-CNN, respectively. Among these, YOLOv8s-seg exhibited the best overall performance, achieving a recall rate of 98.10%, critical for minimizing false negatives and yielding the best overall results. Alongside, the system inspects holes, utilizing image processing techniques like template-matching and blob detection, achieving a 97.30% accuracy and a 2.67% Percentage of Wrong Classifications. The system improves inspection precision and efficiency while supporting sustainability and ergonomic standards, reducing material waste and reducing operator fatigue. © The Author(s) 2025.
2025
Authors
Nascimento, R; Garcia Gonzalez, DG; Pires, EJS; Filipe, V; F Silva, MF; Rocha, L;
Publication
IEEE Access
Abstract
The increasing demand for automated quality inspection in modern industry, particularly for transparent and reflective parts, has driven significant interest in vision-based technologies. These components pose unique challenges due to their optical properties, which often hinder conventional inspection techniques. This systematic review analyzes 24 peer-reviewed studies published between 2015 and 2025, aiming to assess the current state of the art in computer vision-based inspection systems tailored to such materials. The review synthesizes recent advancements in imaging setups, illumination strategies, and deep learning-based defect detection methods. It also identifies key limitations in current approaches, particularly regarding robustness under variable industrial conditions and the lack of standardized benchmarks. By highlighting technological trends and research gaps, this work offers valuable insights and directions for future research - emphasizing the need for adaptive, scalable, and industry-ready solutions to enhance the reliability and effectiveness of inspection systems for transparent and reflective parts. © 2025 Elsevier B.V., All rights reserved.
2024
Authors
Costa, CM; Dias, J; Nascimento, R; Rocha, C; Veiga, G; Sousa, A; Thomas, U; Rocha, L;
Publication
FLEXIBLE AUTOMATION AND INTELLIGENT MANUFACTURING: ESTABLISHING BRIDGES FOR MORE SUSTAINABLE MANUFACTURING SYSTEMS, FAIM 2023, VOL 1
Abstract
Reliable operation of production lines without unscheduled disruptions is of paramount importance for ensuring the proper operation of automated working cells involving robotic systems. This article addresses the issue of preventing disruptions to an automotive production line that can arise from incorrect placement of aluminum car parts by a human operator in a feeding container with 4 indexing pins for each part. The detection of the misplaced parts is critical for avoiding collisions between the containers and a high pressure washing machine and also to avoid collisions between the parts and a robotic arm that is feeding parts to a air leakage inspection machine. The proposed inspection system relies on a 3D sensor for scanning the parts inside a container and then estimates the 6 DoF pose of the container followed by an analysis of the overlap percentage between each part reference point cloud and the 3D sensor data. When the overlap percentage is below a given threshold, the part is considered as misplaced and the operator is alerted to fix the part placement in the container. The deployment of the inspection system on an automotive production line for 22 weeks has shown promising results by avoiding 18 hours of disruptions, since it detected 407 containers having misplaced parts in 4524 inspections, from which 12 were false negatives, while no false positives were reported, which allowed the elimination of disruptions to the production line at the cost of manual reinspection of 0.27% of false negative containers by the operator.
2023
Authors
Nascimento, R; Ferreira, T; Rocha, C; Filipe, V; Silva, MF; Veiga, G; Rocha, L;
Publication
2023 IEEE INTERNATIONAL CONFERENCE ON AUTONOMOUS ROBOT SYSTEMS AND COMPETITIONS, ICARSC
Abstract
Quality control inspection systems are crucial and a key factor in maintaining and ensuring the integrity of any product. The quality inspection task is a repetitive task, when performed by operators only, it can be slow and susceptible to failures due to the lack of attention and fatigue. This work focuses on the inspection of parts made of high-pressure diecast aluminum for components of the automotive industry. In the present case study, last year, 18240 parts needed to be reinspected, requiring approximately 96 hours, a time that could be spent on other tasks. This article performs a comparison of four deep learning models: Faster R-CNN, RetinaNet, YOLOv7, and YOLOv7-tiny, to find out which one is more suited to perform the quality inspection task of detecting metal filings on casting aluminum parts. As for this use-case the prototype must be highly intolerant to False Negatives, that is, the part being defective and passing undetected, Faster R-CNN was considered the bestperforming model based on a Recall value of 96.00%.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.