Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
About

About

Rui E. Araújo received the electrical engineering graduation, M. Sc. and Ph. D. degrees from the Faculty of Engineering of the University of Porto, Portugal in 1987, 1992 and 2001, respectively. From 1987 to 1998, he was an Electrotechnical Engineer in Project Department, Adira Company, Porto, Portugal, and from 1988 to 1989, he was researcher with INESC, Porto, Portugal. Since 1989, he has been with the University of Porto, where he is an Assistant Professor with the Department of Electrotechnical and Computer Engineering at Faculty of Engineering. He is a Researcher in the Power Systems Unit of INESC PORTO. His research interests are focused on motion control and electric vehicles. Recently, his areas of interests include the design and control of grid-connected converters for micro-grids and electric vehicles.

Interest
Topics
Details

Details

  • Name

    Rui Esteves Araujo
  • Role

    Senior Researcher
  • Since

    01st April 2010
012
Publications

2025

A Nonlinear Control Allocation Strategy for Dual Half Bridge Power Converters

Authors
de Castro, R; Araujo, RE; Brembeck, J;

Publication
IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING

Abstract
This work focuses on designing nonlinear control algorithms for dual half-bridge converters (DHBs). We propose a two-layer controller to regulate the current and voltage of the DHB. The first layer utilizes a change in the control variable to obtain a quasi-linear representation of the DHB, allowing for the application of simple linear controllers to regulate current and power flow. The second layer employs a nonlinear control allocation algorithm to select control actions that fulfill (pseudo) power setpoints specified by the first control layer; it also minimizes peak-to-peak currents in the DHB and enforces voltage balance constraints. We apply the DHB and this new control strategy to manage power flow in a hybrid energy storage system comprising of a battery and supercapacitors. Numerical simulation results demonstrate that, in comparison with state-of-the-art approaches, our control algorithm is capable of maintaining good transient behavior over a wide operating range, while reducing peak-to-peak current by up to 80%.

2025

Towards a Digital Model for Emulation of an Electrolyzer in Real-Time: An Initial Study

Authors
Joao, MA; Araújo, RE;

Publication
2025 9th International Young Engineers Forum on Electrical and Computer Engineering (YEF-ECE)

Abstract
The objective of this paper is to delineate the ongoing doctoral research work that is focused on the development of a digital model intended to emulate the real-Time operation of an electrolyzer that is powered by a DC/DC converter. The digital model of the converter and the proton exchange membrane (PEM) electrolyzer (EL) is presented, and it is based on an electrical equivalent model. A primary contribution of this study is the analysis of the errors resulting from the discretization process. Furthermore, the implementation and development of the digital model requires a comprehensive study of the errors and key affecting factors. Additionally, the formulation of a mechanism to reduce these errors is essential for advancing this topic. Preliminary results obtained using the digital emulator developed demonstrated its capacity to reproduce the voltage and current response applied to the electrolyzer with a reduced error compared to the continuous-Time model. © 2025 Elsevier B.V., All rights reserved.

2025

Fuzzy Logic Estimation of Coincidence Factors for EV Fleet Charging Infrastructure Planning in Residential Buildings

Authors
Carvalhosa, S; Ferreira, JR; Araújo, RE;

Publication
ENERGIES

Abstract
As electric vehicle (EV) adoption accelerates, residential buildings-particularly multi-dwelling structures-face increasing challenges to electrical infrastructure, notably due to conservative sizing practices of electrical feeders based on maximum simultaneous demand. Current sizing methods assume all EVs charge simultaneously at maximum capacity, resulting in unnecessarily oversized and costly electrical installations. This study proposes an optimized methodology to estimate accurate coincidence factors, leveraging simulations of EV user charging behaviors in multi-dwelling residential environments. Charging scenarios considering different fleet sizes (1 to 70 EVs) were simulated under two distinct premises of charging: minimization of current allocation to achieve the desired battery state-of-charge and maximization of instantaneous power delivery. Results demonstrate significant deviations from conventional assumptions, with estimated coincidence factors decreasing non-linearly as fleet size increases. Specifically, applying the derived coincidence factors can reduce feeder section requirements by up to 86%, substantially lowering material costs. A fuzzy logic inference model is further developed to refine these estimates based on fleet characteristics and optimization preferences, providing a practical tool for infrastructure planners. The results were compared against other studies and real-life data. Finally, the proposed methodology thus contributes to more efficient, cost-effective design strategies for EV charging infrastructures in residential buildings.

2025

Frequency support from PEM hydrogen electrolysers using Power-Hardware-in-the-Loop validation

Authors
Elhawash, AM; Araújo, RE; Lopes, JAP;

Publication
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY

Abstract
Maintaining frequency stability is one of the biggest challenges facing future power systems, due to the increasing penetration levels of inverter-based renewable resources. This investigation experimentally validates the frequency provision capabilities of a real Polymer Electrolyte Membrane (PEM) hydrogen electrolyser (HE) using a power hardware-in-the-loop (PHIL) setup. The PHIL consists of a custom 3-level interleaved buck converter and a hardware platform for real-time control of the converter and conducting grid simulation, associated with the modelling of the future Iberian Peninsula (IP) and Continental Europe (CE) systems. The investigation had the aim of validating earlier simulation work and testing new responses from the electrolyser when providing different frequency services at different provision volumes. The experimental results corroborate earlier simulation results and capture extra electrolyser dynamics as the double-layer capacitance effect, which was absent in the simulations. Frequency Containment Reserve (FCR) and Fast Frequency Response (FFR) were provided successfully from the HE at different provision percentages, enhancing the nadir and the rate of change of frequency (RoCoF) in the power system when facing a large disturbance compared to conventional support only. The results verify that HE can surely contribute to frequency services, paving the way for future grid support studies beyond simulations.

2025

Speed Control of Switched Reluctance Motor with Torque Ripple Reduction Based on Super-Twisting Sliding Mode Control

Authors
Touati, Z; Araújo, R;

Publication
IFAC-PapersOnLine

Abstract

Supervised
thesis

2023

Estimação do binário do motor de relutância comutado

Author
Lourenço Miguel Ferreira Espírito Santo

Institution
UP-FEUP

2023

Development of an Electric-Vehicle Charging Management System with Smart Scheduling for Existing Condominiums Using Available Power in Real-Time

Author
Salvador Moreira Paes Carvalhosa

Institution
UP-FEUP

2023

Fatigue State Estimator in Car Driving

Author
Miguel Ângelo Coelho dos Santos

Institution
UP-FEUP

2023

Controlo de conversor CC/CC multiporto baseado em 3 graus de liberdade

Author
Nuno Daniel Conceição Alves

Institution
UP-FEUP

2023

Pattern Recognition Machine Learning Algorithms for Fault Classification of PV system

Author
Paulo André Martins Monteiro

Institution
UP-FEUP