Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Interest
Topics
Details

Details

Publications

2020

Evolution of odometry calibration methods for ground mobile robots

Authors
Sousa, RB; Petry, MR; Moreira, AP;

Publication
2020 IEEE International Conference on Autonomous Robot Systems and Competitions, ICARSC 2020

Abstract
Localisation is a critical problem in ground mobile robots. For dead reckoning, odometry is usually used. A disadvantage of using it alone is unbounded error accumulation. So, odometry calibration is critical in reducing error propagation. This paper presents an analysis of the developments and advances of systematic methods for odometry calibration. Four steering geometries were analysed, namely differential drive, Ackerman, tricycle and omnidirectional. It highlights the advances made on this field and covers the methods since UMBmark was proposed. The points of analysis are the techniques and test paths used, errors considered in calibration, and experiments made to validate each method. It was obtained fifteen methods for differential drive, three for Ackerman, two for tricycle, and three for the omnidirectional steering geometry. A disparity was noted, compared with the real utilisation, between the number of published works addressing differential drive and tricycle/Ackerman. Still, odometry continues evolving since UMBmark was proposed. © 2020 IEEE.