Cookies Policy
We use cookies to improve our site and your experience. By continuing to browse our site you accept our cookie policy. Find out More
Close
  • Menu
About

About

Paulo Marques was born in Portugal in 1968. He received a degree in Physics (1991), a MSc in Optoelectronics and Lasers (1995) and a PhD in Physics (2000), all from the University of Porto, Portugal. From Nov. 1999 he was appointed as Teaching Assistant in University of Trás-os-Montes e Alto Douro. In 2001, he joined the Faculty of Science from University of Porto as an Assistant Professor.

Since July 2000 he develops research activity in the Optoelectronics and Electronics Systems Unit (UOSE) of INESC PORTO, being responsible for several National and European research contracts. His current research interests include integrated optical sensors, laser direct writing techniques for integrated optics and microfabrication in general, microfluidics, Bragg gratings, optical photosensitivity. More recently has been involved in laser processing with ultrafast lase sources. Has published 4 world patents (patent family of 32) and published more than 100 scientific papers in international magazines and conferences and three book chapters.

Since October 2009 is the coordinator of the Center of Applied Photonics of INESCTEC (former Optoelectronics and Electronics Systems Unit). From May 2013 is also the director of the Micro and Nanofabrication Center of Porto University (CEMUP MNTEC).

Interest
Topics
Details

Details

008
Publications

2019

Loss Mechanisms of Optical Waveguides Inscribed in Fused Silica by Femtosecond Laser Direct Writing

Authors
Amorim, VA; Maia, JM; Viveiros, D; Marques, PVS;

Publication
Journal of Lightwave Technology

Abstract

2019

High Performance Titanium oxide coated D-shaped Optical Fiber Plasmonic Sensor

Authors
Gangwar, RK; Amorim, VA; Marques, PVS;

Publication
IEEE Sensors Journal

Abstract

2019

Spectral characteristics of optical waveguides fabricated in glass by femtosecond laser direct writing

Authors
Amorim, VA; Viveiros, D; Maia, JM; Marques, PVS;

Publication
Proceedings of SPIE - The International Society for Optical Engineering

Abstract
The fabrication of optical waveguides with femtosecond laser direct writing is reported in two materials, Suprasil1 and Eagle2000. The influence of typical fabrication parameters, such as pulse energy and scan velocity, on the waveguide's spectral characteristics is explored from 500 to 1700 nm. Tests conducted in Suprasil1 evidence a strong presence of Rayleigh scattering, hindering the production of low-loss waveguides at short wavelengths. On the other hand, optical waveguides fabricated in Eagle2000 exhibited lower insertion losses at short wavelengths, enabling the fabrication of low-loss broadband optical waveguides with a two order of magnitude higher scan velocity when compared with Suprasil1. © 2019 SPIE.

2019

Femtosecond laser micromachining of Fabry-Pérot interferometers in fused silica for refractive index sensing

Authors
Maia, JM; Amorim, VA; Viveiros, D; Marques, PVS;

Publication
Proceedings of SPIE - The International Society for Optical Engineering

Abstract
A Fabry-Pérot interferometer was fabricated inside a fused silica substrate through femtosecond laser micromachining. The influence of the waveguide's writing parameters on the measured signal's quality was studied for an interferometer with a 27-µm wide cavity. Optimal signal-to-noise ratio and fringe visibility were obtained for waveguides written at 75 nJ and 50 µm/s. The same device was characterized with different refractive index liquids, and a maximum sensitivity of 1181.4±23.6 nm/RIU was obtained in the index range of 1.2962 to 1.3828 (at 1550 nm) for the spectral order o?'š = 46. © 2019 SPIE.

2019

Mass Producible Low-Loss Broadband Optical Waveguides in Eagle2000 by Femtosecond Laser Writing

Authors
Amorim, VA; Viveiros, D; Maia, JM; Marques, PVS;

Publication
IEEE PHOTONICS TECHNOLOGY LETTERS

Abstract
Optical waveguides were fabricated in alkaline earth boro-aluminosilicate glass, by femtosecond laser direct writing, with varying pulse energy and scan velocity. A spectral characterization, from 500 nm to 1700 nm, was made in order to determine their losses and understand its dependence on the processing parameters. Three major loss mechanisms were identified. At longer wavelengths, loss is mainly due to weak coupling. On the other hand, the behavior at shorter wavelengths is governed by propagation loss due to Rayleigh scattering, which was shown to be practically eliminated (& x003C; 0.05 dB $\cdot$ cm $<^>{-1} {\cdot }\,\,\mu \text{m}<^>{4}$ ) at higher scan velocities. Bulk absorption was also found to have an influence in the propagation losses at higher wavelengths. The combination of intermediate pulse energies (between 125-250 nJ) and high scan velocities (above 6 cm/s) allowed the fabrication of optical waveguides offering low losses across the entire range of wavelengths tested, facilitating applications that require larger wavelength working bands. Furthermore, since optimal fabrication conditions are achieved at higher scanning velocities, mass production with reduced fabrication times can be achieved.

Supervised
thesis

2017

Fabrication of opticals Ensing devices by 3D laser  micromachining

Author
Carlos Duarte Rodrigues Viveiros

Institution
UP-FCUP

2017

High Power Fiber Lasers and Amplifiems -Power Scaling and Performance limitations

Author
Miguel Alexandre Ramos de Melo

Institution
UP-FCUP

2016

FemtoEtch – Femtosecond Laser Micromachining and Applications in Microfluidics and Optofluidics

Author
João Miguel Mendes da Silva Maia

Institution
UP-FCUP

2016

Determinação das condições ótimas de fabricação de componentes óticos revestidos fabricados a partir de vidros fluoro-fosfatados

Author
Tomás Freire Barbas de Albuquerque

Institution
UP-FCUP

2016

Fabrication of Integrated Optical Devices in Fused Silica by Femtosecond Laser Direct Writing

Author
Vítor Alexandre Oliveira Amorim

Institution
UP-FCUP