Cookies Policy
We use cookies to improve our site and your experience. By continuing to browse our site you accept our cookie policy. Find out More
Close
  • Menu
About

About

I am a Lecturer at the Department of Informatics at the University of Minho. I am also a researcher at HASLab/INESC TEC. My research interest focus mainly on machine learning and data mining. Occasionally, I participate in Bioinformatics research projects involving analysis of molecular dynamic simulations of protein folding/unfolding.

 I hold a PhD in Computing from Imperial College (University of London) where I did research in logic programming. I have been working on the development of association rules mining algorithms and novel patterns to capture distribution learning. I also have interest in social network analysis, graph mining, subgroup mining and motif discovery in time series.

Interest
Topics
Details

Details

  • Name

    Paulo Jorge Azevedo
  • Cluster

    Computer Science
  • Role

    Affiliated Researcher
  • Since

    01st November 2011
001
Publications

2018

Preference rules for label ranking: Mining patterns in multi-target relations

Authors
de Sa, CR; Azevedo, P; Soares, C; Jorge, AM; Knobbe, A;

Publication
INFORMATION FUSION

Abstract
In this paper, we investigate two variants of association rules for preference data, Label Ranking Association Rules and Pairwise Association Rules. Label Ranking Association Rules (LRAR) are the equivalent of Class Association Rules (CAR) for the Label Ranking task. In CAR, the consequent is a single class, to which the example is expected to belong to. In LRAR, the consequent is a ranking of the labels. The generation of LRAR requires special support and confidence measures to assess the similarity of rankings. In this work, we carry out a sensitivity analysis of these similarity-based measures. We want to understand which datasets benefit more from such measures and which parameters have more influence in the accuracy of the model. Furthermore, we propose an alternative type of rules, the Pairwise Association Rules (PAR), which are defined as association rules with a set of pairwise preferences in the consequent. While PAR can be used both as descriptive and predictive models, they are essentially descriptive models. Experimental results show the potential of both approaches.

2018

Discovering a taste for the unusual: exceptional models for preference mining

Authors
de Sa, CR; Duivesteijn, W; Azevedo, P; Jorge, AM; Soares, C; Knobbe, A;

Publication
Machine Learning

Abstract
Exceptional preferences mining (EPM) is a crossover between two subfields of data mining: local pattern mining and preference learning. EPM can be seen as a local pattern mining task that finds subsets of observations where some preference relations between labels significantly deviate from the norm. It is a variant of subgroup discovery, with rankings of labels as the target concept. We employ several quality measures that highlight subgroups featuring exceptional preferences, where the focus of what constitutes ‘exceptional’ varies with the quality measure: two measures look for exceptional overall ranking behavior, one measure indicates whether a particular label stands out from the rest, and a fourth measure highlights subgroups with unusual pairwise label ranking behavior. We explore a few datasets and compare with existing techniques. The results confirm that the new task EPM can deliver interesting knowledge. © 2018 The Author(s)

2015

Automatically estimating iSAX parameters

Authors
Castro, NC; Azevedo, PJ;

Publication
INTELLIGENT DATA ANALYSIS

Abstract
The Symbolic Aggregate Approximation (iSAX) is widely used in time series data mining. Its popularity arises from the fact that it largely reduces time series size, it is symbolic, allows lower bounding and is space efficient. However, it requires setting two parameters: the symbolic length and alphabet size, which limits the applicability of the technique. The optimal parameter values are highly application dependent. Typically, they are either set to a fixed value or experimentally probed for the best configuration. In this work we propose an approach to automatically estimate iSAX's parameters. The approach - AutoiSAX - not only discovers the best parameter setting for each time series in the database, but also finds the alphabet size for each iSAX symbol within the same word. It is based on simple and intuitive ideas from time series complexity and statistics. The technique can be smoothly embedded in existing data mining tasks as an efficient sub-routine. We analyze its impact in visualization interpretability, classification accuracy and motif mining. Our contribution aims to make iSAX a more general approach as it evolves towards a parameter-free method.

2015

Contrast set mining in temporal databases

Authors
Magalhães, A; Azevedo, PJ;

Publication
Expert Systems

Abstract

2014

Classifying heart sounds using SAX motifs, random forests and text mining techniques

Authors
Gomes, EF; Jorge, AM; Azevedo, PJ;

Publication
ACM International Conference Proceeding Series

Abstract
In this paper we describe an approach to classifying heart sounds (classes Normal, Murmur and Extra-systole) that is based on the discretization of sound signals using the SAX (Symbolic Aggregate Approximation) representation. The ability of automatically classifying heart sounds or at least support human decision in this task is socially relevant to spread the reach of medical care using simple mobile devices or digital stethoscopes. In our approach, sounds are first pre-processed using signal processing techniques (decimate, low-pass filter, normalize, Shannon envelope). Then the pre-processed symbols are transformed into sequences of discrete SAX symbols. These sequences are subject to a process of motif discovery. Frequent sequences of symbols (motifs) are adopted as features. Each sound is then characterized by the frequent motifs that occur in it and their respective frequency. This is similar to the term frequency (TF) model used in text mining. In this paper we compare the TF model with the application of the TFIDF (Term frequency - Inverse Document Frequency) and the use of bi-grams (frequent size two sequences of motifs). Results show the ability of the motifs based TF approach to separate classes and the relative value of the TFIDF and the bi-grams variants. The separation of the Extra-systole class is overly difficult and much better results are obtained for separating the Murmur class. Empirical validation is conducted using real data collected in noisy environments. We have also assessed the cost-reduction potential of the proposed methods by considering a fixed cost model and using a cost sensitive meta algorithm. Copyright 2014 ACM.

Supervised
thesis

2016

-

Author
Chong liu

Institution
UM