Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Interest
Topics
Details

Details

  • Name

    Mohammad Javadi
  • Cluster

    Power and Energy
  • Role

    Assistant Researcher
  • Since

    01st June 2019
001
Publications

2023

A Price-Based Strategy to Coordinate Electric Springs for Demand Side Management in Microgrids

Authors
Quijano, DA; Ghavidel, MV; Javadi, MS; Feltrin, AP; Catalão, JPS;

Publication
IEEE Trans. Smart Grid

Abstract

2023

Integrated generation-transmission expansion planning considering power system reliability and optimal maintenance activities

Authors
Mahdavi, M; Javadi, MS; Catalao, JPS;

Publication
INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS

Abstract
This paper evaluates lines repair and maintenance impacts on generation-transmission expansion planning (GTEP), considering the transmission and generation reliability. The objective is to form a balance between the transmission and generation expansion and operational costs and reliability, as well as lines repair and main-tenance costs. For this purpose, the transmission system reliability is represented by the value of loss of load (LOL) and load shedding owing to line outages, and generation reliability is formulated by the LOL and load shedding indices because of transmission congestion and outage of generating units. The implementation results of the model on the IEEE RTS show that including line repair and maintenance as well as line loading in GTEP leads to optimal generation and transmission plans and significant savings in expansion and operational costs.

2023

Optimal stochastic operation of technical virtual power plants in reconfigurable distribution networks considering contingencies

Authors
Aghdam, FH; Javadi, MS; Catalao, JPS;

Publication
INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS

Abstract
Virtual Power Plants (VPPs) are one of the concepts introduced in modern power systems to handle the increasing number of the distributed generation (DG) units. Technical VPPs (TVPPs) consider both financial and technical perspectives of using DGs in the system. Besides, secure and reliable operation of the system is a priority. In this paper, optimal operation of technical virtual power plants in a reconfigurable network is formulated as an optimization problem to resolve the probable contingency problem in the lines of the system. The VPP is assumed to be a multi-carrier energy system including combined heat and power (CHP), renewable DGs and dispatchable DGs beside thermal and electrical storage systems and loads. The uncertainties of renewable based DGs and demand levels are handled using chance constrained programming (CCP). By using CCP in presence of uncertain parameters, the security of the system can be guaranteed in predefined level of probability. Finally, to evaluate the effectiveness, quality and applicability of the proposed methodology, the problem is structured as a mixed-integer nonlinear programming (MINLP) problem which is solved using General Algebraic Modeling System (GAMS) software via Baron solver. © 2022 Elsevier Ltd

2023

A strategy to enhance the distribution systems recoverability via the simultaneous coordination of planning actions and operational resources

Authors
Home-Ortiz, JM; Melgar-Dominguez, OD; Javadi, MS; Gough, MB; Mantovani, JRS; Catalao, JPS;

Publication
INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS

Abstract

2023

Hybrid IGDT-stochastic self-scheduling of a distributed energy resources aggregator in a multi-energy system

Authors
Vahid-Ghavidel, M; Shafie-khah, M; Javadi, MS; Santos, SF; Gough, M; Quijano, DA; Catalao, JPS;

Publication
ENERGY

Abstract
The optimal management of distributed energy resources (DERs) and renewable-based generation in multi -energy systems (MESs) is crucial as it is expected that these entities will be the backbone of future energy sys-tems. To optimally manage these numerous and diverse entities, an aggregator is required. This paper proposes the self-scheduling of a DER aggregator through a hybrid Info-gap Decision Theory (IGDT)-stochastic approach in an MES. In this approach, there are several renewable energy resources such as wind and photovoltaic (PV) units as well as multiple DERs, including combined heat and power (CHP) units, and auxiliary boilers (ABs). The approach also considers an EV parking lot and thermal energy storage systems (TESs). Moreover, two demand response (DR) programs from both price-based and incentive-based categories are employed in the microgrid to provide flexibility for the participants. The uncertainty in the generation is addressed through stochastic pro-gramming. At the same time, the uncertainty posed by the energy market prices is managed through the application of the IGDT method. A major goal of this model is to choose the risk measure based on the nature and characteristics of the uncertain parameters in the MES. Additionally, the behavior of the risk-averse and risk -seeking decision-makers is also studied. In the first stage, the sole-stochastic results are presented and then, the hybrid stochastic-IGDT results for both risk-averse and risk-seeker decision-makers are discussed. The pro-posed problem is simulated on the modified IEEE 15-bus system to demonstrate the effectiveness and usefulness of the technique.