Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Tópicos
de interesse
Detalhes

Detalhes

  • Nome

    Mohammad Javadi
  • Cargo

    Investigador Auxiliar
  • Desde

    01 junho 2019
  • Nacionalidade

    Irão
  • Centro

    Sistemas de Energia
  • Contactos

    +351228340554
    mohammad.javadi@inesctec.pt
002
Publicações

2025

Water–energy nexus

Autores
Esmaeel Nezhad, A; Tavakkoli Sabour, T; Javadi, MS; H.J. Nardelli, P; Jowkar, S; Ghanavati, F;

Publicação
Towards Future Smart Power Systems with High Penetration of Renewables

Abstract

2025

A hybrid optimal power flow model for transmission and distribution networks

Autores
Nezhad, AE; Nardelli, PHJ; Javadi, MS; Jowkar, S; Sabour, TT; Ghanavati, F;

Publicação
ELECTRIC POWER SYSTEMS RESEARCH

Abstract
This paper presents a fast and accurate optimization technique for optimal power flow (OPF) that can be conveniently applied to transmission and distribution systems. The method is based on the branch flow and DC optimal power flow (DCOPF) models. As the branch flow model is independent of the bus voltage angle, the model needs further development to enable use in meshed transmission systems. Thus, this paper adds the bus voltage angle constraint as a key constraint to the branch flow model so that the voltage angle can also be used in the power flow model in addition to the voltage magnitude control. The problem is based on second-order programming and modeled as a quadratically-constrained programming (QCP) problem solved using the CPLEX solver in GAMS. The functionality of the proposed model is tested utilizing four standard distribution systems, three transmission systems, a combined transmission-distribution network. The studied distribution systems include the 33-bus, 69-bus, 118-bus distribution (118-D) test systems, and 730-bus distribution system (730-D). Additionally, the studied transmission systems include 9-bus, 30-bus, and 118-bus transmission (118-T) test systems. The combined transmission-distribution system included the 9-bus transmission system with three connected distribution systems. The simulation results obtained from the developed technique are compared to those obtained from a conventional optimal flow model. The power losses and the absolute error of the solution are used as the two metrics to compare the methods' performance for distribution networks. The absolute error of the solution derived from the proposed hybrid OPF compared to MATPOWER for the 33-bus system is 0.00198 %. For the 69-bus system, the error is 0.00044 %. In addition, for the 118-D and 730-D systems, the absolute errors are 0.0026 %, and 0.05 %, respectively. For the transmission network, the operating costs and the solution absolute error are the two metrics used for comparing the proposed hybrid OPF model and MATPOWER. The results indicate the superior performance of the hybrid OPF model to the Newton-Raphson method in MATPOWER in terms of operating cost. In this regard, cost reductions relative to values given by MATPOWER are 0.0005 %, 0.838 %, and 0.015 %, for the 9-bus, 30-bus, and 118-T systems, respectively. The simulation studies demonstrate the performance of the presented branch flow-based model in solving the OPF problem with accurate results.

2025

Integrating the strategic response of parking lots in active distribution networks: An equilibrium approach

Autores
Tostado-Váliz, M; Bhakar, R; Javadi, MS; Nezhad, AE; Jurado, F;

Publicação
IET RENEWABLE POWER GENERATION

Abstract
The increasing penetration of electric vehicles will be accompanied for a wide deployment of charging infrastructures. Large charging demand brings formidable challenges to existing power networks, driving them near to their operational limits. In this regard, it becomes pivotal developing novel energy management strategies for active distribution networks that take into account the strategic behaviour of parking lots. This paper focuses on this issue, developing a novel energy management tool for distribution networks encompassing distributed generators and parking lots. The new proposal casts as a tri-level game equilibrium framework where the profit maximization of lots is implicitly considered, thus ensuring that network-level decisions do not detract the profit of parking owners. The original tri-level model is reduced into a tractable single-level mixed-integer-linear programming by combining equivalent primal-dual and first-order optimality conditions of the distribution network and parking operational models. This way, the model can be solved using off-the-shelf solvers, with superiority against other approaches like metaheuristics. The developed model is validated in well-known 33-, and 85-bus radial distribution systems. Results show that, even under unfavourable conditions with limited distributed generation, charging demand is maximized, thus preserving the interests of parking owners. Moreover, the model is further validated through a number of simulations, showing its effectiveness. Finally, it is demonstrated that the developed tool scales well with the size of the system, easing its implementation in real-life applications.

2025

Co-optimization of Demand Response Aggregators and distribution system operator for resilient operation using machine learning based wind generation forecasting: A bilevel approach

Autores
Aghdam, FH; Zavodovski, A; Adetunji, A; Rasti, M; Pongracz, E; Javadi, MS; Catalao, JPS;

Publicação
INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS

Abstract
The increasing occurrence of extreme weather events has severely compromised the resilience of power distribution systems, resulting in widespread outages and substantial economic losses. This paper proposes a novel solution to enhance the resilience of distribution networks without the need for significant infrastructure upgrades. We introduce a bilevel optimization framework that integrates Demand Response Programs (DRPs) to strategically manage electricity consumption and mitigate the impact of system disruptions. The approach fosters collaboration between Distribution System Operators (DSOs) and Demand Response Aggregators (DRAs), optimizing both operational resilience and economic efficiency. To solve the bilevel problem, we employ a Mathematical Program with Equilibrium Constraints (MPEC), transforming the bilevel model into a single- level problem by utilizing the Karush-Kuhn-Tucker (KKT) conditions. This method is applicable when the lower-level problem is convex with linear constraints. The model also incorporates Long Short-Term Memory (LSTM) neural networks for wind generation forecasting, enhancing decision-making precision. Furthermore, we conduct multiple case studies under varying severities of incidents to evaluate the method's effectiveness. Simulations performed on the IEEE 33-bus test system using GAMS and Python validate that the proposed method not only improves system resilience but also encourages active consumer participation, making it a robust solution for modern smart grid applications. The simulation results show that by performing DRP to handle the contingencies in a high-impact incident, the resilience of the system can be improved by 5.3%.

2024

Protection system planning in distribution networks with microgrids using a bi-level multi-objective and multi-criteria optimization technique

Autores
Reiz, C; Leite, JB; Gouveia, CS; Javadi, MS;

Publicação
ELECTRIC POWER SYSTEMS RESEARCH

Abstract
Microgrids are able to improve several features of power systems, such as energy efficiencies, operating costs and environmental impacts. Nevertheless, microgrids' protection must work congruently with power distribution protection to safely take all advantages. This research contributes to enable their protection by proposing a bilevel method to simultaneously solve the allocation and coordination problems, where the proposed scheme also includes local protections of distributed energy resources. The uncertainties associated with generation and loads are categorized by the k-means method, as well. The non-dominated sorting genetic algorithm II is employed in the upper-level task to solve the protection and control devices allocation problem with two opposing objectives. In the lower-level task, a genetic algorithm ensures their coordination. Protection devices include reclosers and fuses from the network, and directional relays for the point of common coupling of microgrids, while control devices consist of remote-controlled switches. In contrast to related works, local devices installed at the point of coupling of distributed generation units are considered as well, such as voltage-restrained overcurrent relays and frequency relays. The optimal solution for the decision-maker is achieved by utilizing the compromise programming technique. Results show the importance of solving the allocation and coordination problems simultaneously, achieving up to $25,000 cost savings compared to cases that solve these problems separately. The integrated strategy allows the network operator to select the optimum solution for the protective system and avoid corrective actions afterward. The results also show the viability of the islanding operation depending on the decision maker's criteria.