Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Interest
Topics
Details

Details

  • Name

    Maria Francisca Almeida
  • Role

    Researcher
  • Since

    01st September 2023
002
Publications

2024

Predicting Hydro Reservoir Inflows with AI Techniques Using Radar Data and a Numerical Weather Prediction Model

Authors
Almeida, MF; Soares, FJ; Oliveira, FT; Saraiva, JT; Pereira, RM;

Publication
IEEE 15TH INTERNATIONAL SYMPOSIUM ON POWER ELECTRONICS FOR DISTRIBUTED GENERATION SYSTEMS, PEDG 2024

Abstract
Reducing the gap between renewable energy needs and supply is crucial to achieve sustainable growth. Hydroelectric power production predictions in several Madeira Island catchment regions are shown in this article using Long Short-Term Memory, LSTM, networks. In order to foresee hydro reservoirs inflows, our models take into account the island's dynamic precipitation and flow rates and simplify the process of water moving from the cloud to the turbine. The model developed for the Socorridos Faja Rodrigues system demonstrates the proficiency of LSTMs in capturing the unexpected flow behavior through its low RMSE. When it comes to energy planning, the model built for the CTIII Paul Velho system gives useful information despite its lower accuracy when it comes to anticipating problems.