Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Tópicos
de interesse
Detalhes

Detalhes

  • Nome

    Maria Francisca Almeida
  • Cargo

    Investigador
  • Desde

    01 setembro 2023
  • Nacionalidade

    Portugal
  • Centro

    Sistemas de Energia
  • Contactos

    +351222094000
    maria.f.almeida@inesctec.pt
002
Publicações

2024

Predicting Hydro Reservoir Inflows with AI Techniques Using Radar Data and a Numerical Weather Prediction Model

Autores
Almeida, MF; Soares, FJ; Oliveira, FT; Saraiva, JT; Pereira, RM;

Publicação
IEEE 15TH INTERNATIONAL SYMPOSIUM ON POWER ELECTRONICS FOR DISTRIBUTED GENERATION SYSTEMS, PEDG 2024

Abstract
Reducing the gap between renewable energy needs and supply is crucial to achieve sustainable growth. Hydroelectric power production predictions in several Madeira Island catchment regions are shown in this article using Long Short-Term Memory, LSTM, networks. In order to foresee hydro reservoirs inflows, our models take into account the island's dynamic precipitation and flow rates and simplify the process of water moving from the cloud to the turbine. The model developed for the Socorridos Faja Rodrigues system demonstrates the proficiency of LSTMs in capturing the unexpected flow behavior through its low RMSE. When it comes to energy planning, the model built for the CTIII Paul Velho system gives useful information despite its lower accuracy when it comes to anticipating problems.