Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
About

About

S. Mahdi Homayouni is a Researcher at the Centre for Enterprise Systems Engineering (CESE), INESC TEC, Porto, Portugal, and an invited Assistant Professor in Operations Management at the Faculdade de Economia (FEP), Universidade do Porto. He has been an Assistant Professor at the Department of Industrial Engineering, Islamic Azad University, Lenjan Branch, Isfahan, Iran from Feb 2011 to January 2017. He holds a Ph.D. and a Master’s in industrial and Systems Engineering, from Universiti Putra Malaysia and a Bachelor of Engineering in Industrial Production Engineering from Azad University of Najafabad, Iran. Mahdi’s research focus is on developing exact and heuristic solutions approaches for the supply chain and operations management problems, particularly, operations planning and scheduling problems in advanced manufacturing systems and seaport container terminals, promoting sustainability objectives. Https://scholar.google.com/citations?user=D0QT05YAAAAJ&hl=en Http://www.linkedin.com/profile/preview?locale=en_US&trk=prof-0-sb-preview-primary-button Http://orcid.org/0000-0001-6833-9316

Interest
Topics
Details

Details

002
Publications

2023

A multistart biased random key genetic algorithm for the flexible job shop scheduling problem with transportation

Authors
Homayouni, SM; Fontes, DBMM; Goncalves, JF;

Publication
INTERNATIONAL TRANSACTIONS IN OPERATIONAL RESEARCH

Abstract

2023

A Multi-Population BRKGA for Energy-Efficient Job Shop Scheduling with Speed Adjustable Machines

Authors
Homayouni, SM; Fontes, DBMM; Fontes, FACC;

Publication
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)

Abstract

2023

A Hybrid Particle Swarm Optimization and Simulated Annealing Algorithm for the Job Shop Scheduling Problem with Transport Resources

Authors
Fontes, DBMM; Homayouni, SM; Goncalves, JF;

Publication
EUROPEAN JOURNAL OF OPERATIONAL RESEARCH

Abstract

2022

Energy-Efficient Scheduling in Job Shop Manufacturing Systems: A Literature Review

Authors
Fernandes, JMRC; Homayouni, SM; Fontes, DBMM;

Publication
SUSTAINABILITY

Abstract
Energy efficiency has become a major concern for manufacturing companies not only due to environmental concerns and stringent regulations, but also due to large and incremental energy costs. Energy-efficient scheduling can be effective at improving energy efficiency and thus reducing energy consumption and associated costs, as well as pollutant emissions. This work reviews recent literature on energy-efficient scheduling in job shop manufacturing systems, with a particular focus on metaheuristics. We review 172 papers published between 2013 and 2022, by analyzing the shop floor type, the energy efficiency strategy, the objective function(s), the newly added problem feature(s), and the solution approach(es). We also report on the existing data sets and make them available to the research community. The paper is concluded by pointing out potential directions for future research, namely developing integrated scheduling approaches for interconnected problems, fast metaheuristic methods to respond to dynamic scheduling problems, and hybrid metaheuristic and big data methods for cyber-physical production systems.

2022

Energy-Efficient Scheduling of Intraterminal Container Transport

Authors
Homayouni, SM; Fontes, DBMM;

Publication
Springer Optimization and Its Applications

Abstract
Maritime transportation has been, historically, a major factor in economic development and prosperity since it enables trade and contacts between nations. The amount of trade through maritime transport has increased drastically; for example, about 90% of the European Union’s external trade and one-third of its internal trade depend on maritime transport. Major ports, typically, incorporate multiple terminals serving containerships, railways, and other forms of hinterland transportation and require interterminal and intraterminal container transport. Many factors influence the productivity and efficiency of ports and hence their economic viability. Moreover, environmental concerns have been leading to stern regulation that requires ports to reduce, for example, greenhouse gas emissions. Therefore, port authorities need to balance economic and ecological objectives in order to ensure sustainable growth and to remain competitive. Once a containership moors at a container terminal, several quay cranes are assigned to the ship to load/unload the containers to/from the ship. Loading activities require the containers to have been previously made available at the quayside, while unloading ones require the containers to be removed from the quayside. The containers are transported between the quayside and the storage yard by a set of vehicles. This chapter addresses the intraterminal container transport scheduling problem by simultaneously scheduling the loading/unloading activities of quay cranes and the transport (between the quayside and the storage yard) activities of vehicles. In addition, the problem includes vehicles with adjustable travelling speed, a characteristic never considered in this context. For this problem, we propose bi-objective mixed-integer linear programming (MILP) models aiming at minimizing the makespan and the total energy consumption simultaneously. Computational experiments are conducted on benchmark instances that we also propose. The computational results show the effectiveness of the MILP models as well as the impact of considering vehicles with adjustable speed, which can reduce the makespan by up to 16.2% and the total energy consumption by up to 2.5%. Finally, we also show that handling unloading and loading activities simultaneously rather than sequentially (the usual practice rule) can improve the makespan by up to 34.5% and the total energy consumption by up to 18.3%. © 2022, The Author(s), under exclusive license to Springer Nature Switzerland AG.