Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
About

About

I'm currently enrolled in the PhD in Informatics of the University of Minho, and I do research in quantum computing, with a thesis project on quantum algorithms for optimization (with a special focus on those that, being suitable for the current NISQ era, seem to be viable in the short term). I finished the Integrated Masters in Physics Engineering in 2021, on the Physics of Information Branch; throughout the course I gathered competences in different areas of physics, informatics, and maths. In my Master's dissertation I explored adaptive ansätze for the Variational Quantum Eigensolver, an algorithm for NISQ computers.

Interest
Topics
Details

Details

  • Name

    Mafalda Francisco Alves
  • Role

    Research Assistant
  • Since

    01st April 2022
Publications

2025

Reducing the resources required by ADAPT-VQE using coupled exchange operators and improved subroutines

Authors
Ramôa, M; Anastasiou, PG; Santos, LP; Mayhall, NJ; Barnes, E; Economou, SE;

Publication
NPJ QUANTUM INFORMATION

Abstract
Adaptive variational quantum algorithms arguably offer the best prospects for quantum advantage in the Noisy Intermediate-Scale Quantum era. Since the inception of the first such algorithm, the Adaptive Derivative-Assembled Problem-Tailored Variational Quantum Eigensolver (ADAPT-VQE), many improvements have appeared in the literature. We combine the key improvements along with a novel operator pool-which we term Coupled Exchange Operator (CEO) pool-to assess the cost of running state-of-the-art ADAPT-VQE on hardware in terms of measurement counts and circuit depth. We show a dramatic reduction of these quantum computational resources compared to the early versions of the algorithm: CNOT count, CNOT depth and measurement costs are reduced by up to 88%, 96% and 99.6%, respectively, for molecules represented by 12 to 14 qubits (LiH, H6 and BeH2). We also find that our state-of-the-art CEO-ADAPT-VQE outperforms the Unitary Coupled Cluster Singles and Doubles ansatz, the most widely used static VQE ansatz, in all relevant metrics, and offers a five order of magnitude decrease in measurement costs as compared to other static ans & auml;tze with competitive CNOT counts.

2025

Reducing measurement costs by recycling the Hessian in adaptive variational quantum algorithms

Authors
Ramôa, M; Santos, LP; Mayhall, NJ; Barnes, E; Economou, SE;

Publication
QUANTUM SCIENCE AND TECHNOLOGY

Abstract
Adaptive protocols enable the construction of more efficient state preparation circuits in variational quantum algorithms (VQAs) by utilizing data obtained from the quantum processor during the execution of the algorithm. This idea originated with Adaptive Derivative-Assembled Problem-Tailored variational quantum eigensolver (ADAPT-VQE), an algorithm that iteratively grows the state preparation circuit operator by operator, with each new operator accompanied by a new variational parameter, and where all parameters acquired thus far are optimized in each iteration. In ADAPT-VQE and other adaptive VQAs that followed it, it has been shown that initializing parameters to their optimal values from the previous iteration speeds up convergence and avoids shallow local traps in the parameter landscape. However, no other data from the optimization performed at one iteration is carried over to the next. In this work, we propose an improved quasi-Newton optimization protocol specifically tailored to adaptive VQAs. The distinctive feature in our proposal is that approximate second derivatives of the cost function are recycled across iterations in addition to optimal parameter values. We implement a quasi-Newton optimizer where an approximation to the inverse Hessian matrix is continuously built and grown across the iterations of an adaptive VQA. The resulting algorithm has the flavor of a continuous optimization where the dimension of the search space is augmented when the gradient norm falls below a given threshold. We show that this inter-optimization exchange of second-order information leads the approximate Hessian in the state of the optimizer to be consistently closer to the exact Hessian. As a result, our method achieves a superlinear convergence rate even in situations where the typical implementation of a quasi-Newton optimizer converges only linearly. Our protocol decreases the measurement costs in implementing adaptive VQAs on quantum hardware as well as the runtime of their classical simulation.