Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
About
Download Photo HD

About

Luís Carlos Costa Coelho received his graduation in Physics Engineering in 2006 and MSc in Instrumentation and Microelectronics in 2007 both by University of Coimbra in Portugal. At the Physics Department of the same University he developed research in Atomic and Nuclear Instrumentation with focus on gaseous scintillation counters towards high energy radiation. In this context he was directly involved in the international experience "Xenon Direct Dark Matter Search" at the National Laboratory of Gran Sasso in Italy, aiming search dark matter through the detection of weakly interacting massive particles. In 2010 he started to working in optical fibre sensors at the Optoelectronics and Electronic Systems of INESC Porto in Portugal, mainly applied to hydrogen detection under the project MICROPHYTE-Metabolic engineering of chlamydomonas and environmental optimization for hydrogen production and release. In 2016 received his Ph.D. degree in Physics at the University of Porto, Porto, Portugal with the focus on thin films technology applied to optical fibre sensors in collaboration with the now Centre for Applied Photonics of INESC TEC, Porto, Portugal. He?s research involves the study of coating types for gases and liquids detection, in particular hydrogen, for refractometers with surface plasmon resonance and for high refractive index samples monitoring with coated long period fibre gratings. He?s current research interests includes bio and chemical sensors based on thin film coating technology of particular structures as long period fibre gratings, fibre Bragg gratings, using surface plasmon resonance phenomenon. He is currently a Post-doc Researcher working in the project MARINEYE at INESC TEC ? A prototype for multitrophic oceanic monitoring developing sensors for dissolved carbon dioxide detection using colorimetric and refractometer platforms combined with new designs of optical fibre structures. In the last few years, he has published more than 47 papers in international journals with referee and over 35 papers in national and international conferences with more than 1350 citations and an h index of 13. He has been referee in a wide range of international journals as IEEE, OSA, SPIE, Elsevier, Pier, MDPI and Springer. He was also the president of the University of Porto SPIE Student Chapter in 2014 and a member of the organization team of the 9th Advanced Study Course on Optical Chemical Sensors and Biosensors (ASCOS 2015). Luis Coelho is a member of SPIE.

Interest
Topics
Details

Details

  • Nationality

    Portugal
  • Centre

    Applied Photonics
  • Contacts

    +351220402301
    luis.c.coelho@inesctec.pt
007
Publications

2022

Analysis of the Relative Humidity Response of Hydrophilic Polymers for Optical Fiber Sensing

Authors
Dias, B; Carvalho, J; Mendes, JP; Almeida, JMMM; Coelho, LCC;

Publication
POLYMERS

Abstract
Relative humidity (RH) monitorization is of extreme importance on scientific and industrial applications, and optical fiber sensors (OFS) may provide adequate solutions. Typically, these kinds of sensors depend on the usage of humidity responsive polymers, thus creating the need for the characterization of the optical and expansion properties of these materials. Four different polymers, namely poly(vinyl alcohol), poly(ethylene glycol), Hydromed™ D4 and microbiology agar were characterized and tested using two types of optical sensors. First, optical fiber Fabry–Perot (FP) tips were made, which allow the dynamical measurement of the polymers’ response to RH variations, in particular of refractive index, film thickness, and critical deliquescence RH. Using both FP tips and Long-Period fiber gratings, the polymers were then tested as RH sensors, allowing a comparison between the different polymers and the different OFS. For the case of the FP sensors, the PEG tips displayed excellent sensitivity above 80%RH, outperforming the other polymers. In the case of LPFGs, the 10% (wt/wt) PVA one displayed excellent sensitivity in a larger working range (60 to 100%RH), showing a valid alternative to lower RH environment sensing.

2022

A Plasmonic Biosensor Based on Light-Diffusing Fibers Functionalized with Molecularly Imprinted Nanoparticles for Ultralow Sensing of Proteins

Authors
Arcadio, F; Seggio, M; Del Prete, D; Buonanno, G; Mendes, J; Coelho, LCC; Jorge, PAS; Zeni, L; Bossi, AM; Cennamo, N;

Publication
NANOMATERIALS

Abstract
Plasmonic bio/chemical sensing based on optical fibers combined with molecularly imprinted nanoparticles (nanoMIPs), which are polymeric receptors prepared by a template-assisted synthesis, has been demonstrated as a powerful method to attain ultra-low detection limits, particularly when exploiting soft nanoMIPs, which are known to deform upon analyte binding. This work presents the development of a surface plasmon resonance (SPR) sensor in silica light-diffusing fibers (LDFs) functionalized with a specific nanoMIP receptor, entailed for the recognition of the protein human serum transferrin (HTR). Despite their great versatility, to date only SPR-LFDs functionalized with antibodies have been reported. Here, the innovative combination of an SPR-LFD platform and nanoMIPs led to the development of a sensor with an ultra-low limit of detection (LOD), equal to about 4 fM, and selective for its target analyte HTR. It is worth noting that the SPR-LDF-nanoMIP sensor was mounted within a specially designed 3D-printed holder yielding a measurement cell suitable for a rapid and reliable setup, and easy for the scaling up of the measurements. Moreover, the fabrication process to realize the SPR platform is minimal, requiring only a metal deposition step.

2022

Study of LSPR Spectral Analysis Techniques on SPR Optical Fiber Sensors

Authors
Dos Santos, PSS; de Almeida, JMMM; Coelho, LCC;

Publication
U.Porto Journal of Engineering

Abstract
Nanoparticles create localized surface plasmonic resonances (LSPR) with lower surrounding refractive index (SRI) sensitivities than their propagating SPR counterpart, originated in thin films. Historically, LSPR SRI sensitivities enhancements were achieved through spectral analysis methods that focus on unique spectral features. Herein, a study using that methodology was applied on SPR devices resulting in an increased sensitivity to SRI. It was found that by applying the inflection point method on optical fiber SPR sensors resulted in both sensitivity and resolution increments up to 44 and 35 %, respectively, in the SRI range from 1.3333 to 1.4150. Thus, successfully improving sensing capabilities of SPR based optical fiber sensors.

2022

Long-Period Fiber Gratings Coated with Poly(ethylene glycol) as Relative Humidity Sensors

Authors
Dias, B; de Almeida, JMMM; Coelho, LCC;

Publication
U.Porto Journal of Engineering

Abstract
Relative humidity is an important parameter in controlled environments and is typically monitored using low-cost electrochemical sensors with low resolution and accuracy. This kind of sensors cannot not be implemented in harsh or explosive environments (as in pyrotechnic facilities) due to electrical discharges, or in marine structures where the oxidation of the sensing probe materials changes the sensing response). In these cases, fiber optic sensors can provide solutions due to their intrinsic properties, such as immunity to electromagnetic interference and resistance in harsh environments. This work presents preliminary results regarding the steps of the fabrication of Long-Period Fiber Gratings, the coating processes with a thin layer of poly(ethylene glycol) (PEG) and its sensing performance to relative humidity, displaying a from 60 to 100%sensitivity of 0.6 nm/%RH in the range of 80 to 100%RH.

2022

Simple Optical Fiber Interferometer for Dynamic Measurement of Refractive Index and Thickness of Polymer Films

Authors
Dias, B; Mendes, JPS; de Almeida, JMMM; Coelho, LCC;

Publication
IEEE SENSORS JOURNAL

Abstract

Supervised
thesis

2020

Development of cost-effective monitoring systems for chemical water contamination using nanoparticle coated optical fibre sensors

Author
Paulo Sérgio Soares dos Santos

Institution
UP-FEUP

2020

Development of optical sensors for public health

Author
Ana Beatriz Matias Teixeira

Institution
IES_Outra

2020

Development of a hybrid CO2 monitoring system using spectral characteristics of a sensitive chemical membrane

Author
Nuno Alexandre Pereira Mendes

Institution
UP-FCUP

2018

Planeamento e navegação de veículos autónomos de superfície em grandes recursos hídricos

Author
Nuno Miguel de Barbosa Ferreira

Institution
UP-FEUP