Detalhes
Nome
Luís Carlos CoelhoCargo
Coordenador de CentroDesde
01 fevereiro 2010
Nacionalidade
PortugalCentro
Fotónica AplicadaContactos
+351220402301
luis.c.coelho@inesctec.pt
2025
Autores
dos Santos, PSS; Mendes, JP; Pastoriza-Santos, I; Juste, JP; de Almeida, JMMM; Coelho, LCC;
Publicação
SENSORS AND ACTUATORS B-CHEMICAL
Abstract
The lower refractive index sensitivity (RIS) of plasmonic nanoparticles (NP) in comparison to their plasmonic thin films counterparts hindered their wide adoption for wavelength-based sensor designs, wasting the NP characteristic field locality. In this context, high aspect-ratio colloidal core-shell Ag@Au nanorods (NRs) are demonstrated to operate effectively at telecommunication wavelengths, showing RIS of 1720 nm/RIU at 1350 nm (O-band) and 2325 nm/RIU at 1550 nm (L-band), representing a five-fold improvement compared to similar Au NRs operating at equivalent wavelengths. Also, these NRs combine the superior optical performance of Ag with the Au chemical stability and biocompatibility. Next, using a side-polished optical fiber, we detected glyphosate, achieving a detection limit improvement from 724 to 85 mg/L by shifting from the O to the C/L optical bands. This work combines the significant scalability and cost-effective advantages of colloidal NPs with enhanced RIS, showing a promising approach suitable for both point-of-care and long-range sensing applications at superior performance than comparable thin film-based sensors in either environmental monitoring and other fields.
2025
Autores
Carvalho, JPM; Dias, BS; Coelho, LCC; de Almeida, JMMM;
Publicação
SENSORS
Abstract
Magneto-optic surface plasmon resonances (MOSPRs) rely on the interaction of magnetic fields with surface plasmon polaritons (SPP) to modulate plasmonic bands with magnetic fields and enhance magneto-optical activity. In the present work, a study on the magnetoplasmonic behavior of Ag/Fe bilayers is carried out by VIS-NIR spectroscopy and backed with SQUID measurements, determining the thickness-dependent magnetization of thin-film samples. The MOSPR sensing properties of Ag/Fe planar bilayers are simulated using Berreman's matrix formalism, from which an optimized structure composed of 15 nm of Ag and 12.5 nm of Fe is obtained. The selected structure is fabricated and characterized for refractive index (RI) sensitivity, reaching 4946 RIU-1 and returning an effective enhancement of refractometric sensitivity after magneto-optical modulation. A new optimized and cobalt-free magnetoplasmonic Ag/Fe bilayer structure is studied, fabricated, and characterized for the first time towards refractometric sensing, to the best of our knowledge. This configuration exhibits potential for enhancing refractometric sensitivity via magneto-optical modulation, thus paving the way towards a simpler, more accessible, and safe type of RI sensor with potential applications in chemical sensors and biosensors.
2025
Autores
Coelho L.C.C.; Almeida M.; Carvalho J.; Santos P.; Santos A.; Mendes J.; De Almeida J.M.M.M.;
Publicação
EPJ Web of Conferences
Abstract
Optical sensing exploiting plasmonics and other types of surface waves provides exceptional performance for chemical and biological detection due to its high sensitivity and real-time capabilities. This study explores the integration of thin films with plasmonic, specifically leveraging metallic and dielectric nano structures, fabricated through sputtering and colloidal synthesis techniques. Advanced surface wave excitations such as localized surface plasmon resonances (SPR), Tamm Plasmon Polaritons (TPP), Bloch surface waves, and surface plasmon polaritons (SPP) are used to amplify sensor performance. Simulations and experimental data show that these nanostructured coatings significantly enhance electromagnetic field confinement, leading to improved detection limits and sensor robustness, showcasing promising applications in environmental monitoring, gas detection, and biomedical diagnostics.
2025
Autores
Lorenzo Santini; Luís Carlos Costa Coelho; Claudio Floridia;
Publicação
Abstract
A novel technique based on multiple amplitude wavelength modulation spectroscopy (MA-WMS) for simultaneous measurement of CH4 gas concentration and pressure was developed and validated both through simulation and experiment, showing good agreement. To capture the spectrum broadening caused by increasing pressure and concomitantly obtain the concentration at the sensor’s location, a laser centered at 1650.9 nm was subjected to multiple amplitude modulation depths while the 2fm signal, normalized by the DC component (an invariant quantity under optical loss), was recorded. While the use of a single and fixed modulation can introduce an ambiguity, as different pairs of pressure and concentration can yield the same value, this ambiguity is eliminated by employing multiple amplitude modulations. In this approach, the intersection point of the three level curves can provide the local pressure and concentration. The proposed system was able to measure concentrations from a few percentage points up to 50% and pressure from 0.02 atm up to 2 atm, with a maximum error of 2% in concentration and 0.06 atm in pressure, respectively. The system was also tested for attenuation insensitivity, demonstrating that measurements were not significantly affected for up to 10 dB applied optical loss.
2025
Autores
Almeida, MAS; Carvalho, JPM; Pastoriza-Santos, I; de Almeida, JMMM; Coelho, LCC;
Publicação
OPTICAL SENSORS 2025
Abstract
Due to the increase in energy consumption based on fossil fuels, sustainable alternatives have emerged, and green hydrogen (H-2) is one of them. This fuel is a promising eco-friendly energy source but is highly flammable. Therefore, continuous monitoring is essential, where optical sensors can contribute with a fast and remote sensing capability. In this field, plasmonic sensors have demonstrated high sensitivity, but with the plasmonic band in the visible range and low definition in the infrared. It presents a sensing structure for H-2 sensing composed of inexpensive materials (SiO2 and TiO2) and Pd as a sensitive medium, which supports Tamm Plasmon Resonance. The structure is numerically optimized to obtain a plasmonic band around 1550nm, which was experimentally validated with a sensitivity of 9.5nm in the presence of 4 vol% H2 and a response time of 30 seconds. This work aims to emphasize the advantages of this plasmonic technique for gas sensing at the infrared spectral range, allowing remote sensing.
Teses supervisionadas
2023
Autor
Paulo Sérgio Soares dos Santos
Instituição
UP-FCUP
2023
Autor
Miguel Ângelo Silva Almeida
Instituição
UP-FCUP
2023
Autor
Pedro Miguel Madeira da SIlva
Instituição
UP-FCUP
2023
Autor
João Pedro Miranda Carvalho
Instituição
UP-FCUP
2023
Autor
José Miguel da Silva Amaral Pereira
Instituição
UP-FCUP
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.