Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
About
Download Photo HD

About

Jose Manuel Marques Martins de Almeida received the
Graduate degree in applied physics (optics and electronics)
in 1987 and the Ph.D. degree in 1998 from the
University of Porto, Porto, Portugal. Since 2000, he has the
position of an Associate Professor at the Department of
Physics, Universidade de Trás os Montes e Alto Douro, Vila
Real, Portugal, and received Habilitation in 2006 from the
same University. He is currently a Senior Researcher in the
Centre for Applied Photonics of INESC TEC, Porto. His current
research interests include optical sensors, integrated
optics, spectroscopy, and biophysics.

Interest
Topics
Details

Details

  • Nationality

    Portugal
  • Centre

    Applied Photonics
  • Contacts

    +351220402301
    jose.almeida@inesctec.pt
002
Publications

2019

Evaluation of food labelling usefulness for consumers

Authors
Moreira, MJ; Garcia Diez, J; de Almeida, JMMM; Saraiva, C;

Publication
International Journal of Consumer Studies

Abstract

2019

Low-cost interrogation system for long-period fiber gratings applied to remote sensing

Authors
dos Santos, PSS; Jorge, PAS; de Almeida, JMMM; Coelho, L;

Publication
Sensors (Switzerland)

Abstract
We present a portable and low-cost system for interrogation of long-period fiber gratings (LPFGs) costing around a 30th of the price of a typical setup using an optical spectrum analyzer and a broadband light source. The unit is capable of performing real-time monitoring or as a stand-alone data-logger. The proposed technique uses three thermally modulated fiber-coupled laser diodes, sweeping a few nanometers around their central wavelength. The light signal is then modulated by the LPFG and its intensity is acquired by a single photo-detector. Through curve-fitting algorithms the sensor transmission spectrum is reconstructed. Testing and validation were accomplished by inducing variations in the spectral features of an LPFG through changes either in external air temperature from 22 to 425 °C or in refractive index (RI) of the surrounding medium from 1.3000 to 1.4240. A dynamic resolution between 3.5 and 1.9 °C was achieved, in temperatures from 125 to 325 °C. In RI measurements, maximum wavelength and optical power deviations of 2.75 nm and 2.86 dB, respectively, were obtained in the range from 1530 to 1570 nm. The worse RI resolution obtained was 3.47 × 10 -3 . The interrogation platform was then applied in the detection of iron corrosion, expressing wavelength peak values within 1.12 nm from the real value in the region between 1530 and 1570 nm. © 2019 by the authors. Licensee MDPI, Basel, Switzerland.

2019

Mach-Zehnder Interferometers Based on Long Period Fiber Grating Coated with Titanium Dioxide for Refractive Index Sensing

Authors
Soares Guedes Vasconcelos, HCASG; Marques Martins de Almeida, JMMM; Teixeira Saraiva, CMT; da Silva Jorge, PAD; Costa Coelho, LCC;

Publication
Journal of Lightwave Technology

Abstract

2018

Quantification of Ethanol Concentration in Gasoline Using Cuprous Oxide Coated Long Period Fiber Gratings

Authors
Monteiro Silva, F; Santos, JL; Marques Martins de Almeida, JMMM; Coelho, L;

Publication
IEEE Sensors Journal

Abstract

2018

Real-time Early Warning Strategies for Corrosion Mitigation in Harsh Environments

Authors
Costa Coelho, LCC; Soares dos Santos, PSS; da Silva Jorge, PAD; Santos, JL; Marques Martins de Almeida, JMMM;

Publication
Journal of Lightwave Technology

Abstract
Long period fiber gratings (LPFGs) were coated with iron (Fe) and exposed to oxidation in air and in water having different concentrations of sodium chloride (NaCl) to detect the formation of iron oxides and hydroxides. The process was monitored in real time by measuring the characteristics of the LPFGs attenuation bands. Thin films of Fe were deposited on top of silica (SiO2) substrates, annealed in air, and exposed to water with NaCl. The composition of the oxide and hydroxide layers were analyzed by SEM/EDS and XRD. It was observed the formation of oxide phases, Fe3O4 (magnetite) and Fe2O3 (hematite) when annealing in air, and Fe2(OH)3Cl (hibbingite) and FeO(OH) (lepidocrocite) when exposed to water with NaCl. Results shows that Fe coated LPFGs can be used as sensors for real time monitoring of corrosion in offshore and in coastal projects where metal structures made of iron alloys are in contact with sea or brackish water. In addition, LPFGs coated with hematite were characterized for sensing, leading to the conclusion that the sensitivity to the refractive index of the surrounding medium can be tuned by proper choice of hematite thickness. IEEE

Supervised
thesis

2019

Estudo de adulteração de carne e peixe fresco

Author
Maria João Pinho Moreira

Institution
UTAD

2019

Development cost-effective solutions for multispectral interrogation of optical fibre sensors for bio-chemical applications

Author
Paulo Sérgio Soares dos Santos

Institution
UP-FEUP

2019

Development of optical biosensors for monitoring the deterioration of fresh meat and fish

Author
Helena Catarina Araújo Soares Guedes Vasconcelos

Institution
UTAD

2018

Estudo de adulteração de carne e peixe fresco

Author
Maria João Moreira

Institution
UTAD

2018

Development of optical biosensors for monitoring the deterioration of fresh meat and fish

Author
Helena Catarina Araújo Soares Guedes Vasconcelos

Institution
UTAD