Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
About

About

José Manuel Marques Martins de Almeida, completed his PhD degree in Physics in 1998 at the University of Porto.

He is Associate Professor with Habilitation at University of Trás-os-Montes e Alto Douro School of Sciences and Technology.

As of February 2025, he published 112 articles indexed in SCOPUS, 25 book(s) and 2 section(s) of books. He has an H-index of 23 (WOS).

He collaborated in the supervision of 5 PhD students, 15 MSc students and 16 “End of course projects” (Seminar) . He is currently involved in the supervision of 3 MSc students and 3 PhD students.

He works in the area of Physical Sciences with emphasis on Nanotechnology, Nanophotonics, Biosensors and Electromagnetic Surface Waves.

In their professional activities interacted with 141 collaborator(s) co-authorship of scientific papers.

Interest
Topics
Details

Details

  • Name

    José Almeida
  • Role

    Research Coordinator
  • Since

    17th September 2012
  • Nationality

    Portugal
  • Centre

    Applied Photonics
  • Contacts

    +351220402301
    jose.almeida@inesctec.pt
007
Publications

2025

Optimization of Magnetoplasmonic Behavior in Ag/Fe Bilayer Nanostructures Towards Refractometric Sensing

Authors
Carvalho, JPM; Dias, BS; Coelho, LCC; de Almeida, JMMM;

Publication
SENSORS

Abstract
Magneto-optic surface plasmon resonances (MOSPRs) rely on the interaction of magnetic fields with surface plasmon polaritons (SPP) to modulate plasmonic bands with magnetic fields and enhance magneto-optical activity. In the present work, a study on the magnetoplasmonic behavior of Ag/Fe bilayers is carried out by VIS-NIR spectroscopy and backed with SQUID measurements, determining the thickness-dependent magnetization of thin-film samples. The MOSPR sensing properties of Ag/Fe planar bilayers are simulated using Berreman's matrix formalism, from which an optimized structure composed of 15 nm of Ag and 12.5 nm of Fe is obtained. The selected structure is fabricated and characterized for refractive index (RI) sensitivity, reaching 4946 RIU-1 and returning an effective enhancement of refractometric sensitivity after magneto-optical modulation. A new optimized and cobalt-free magnetoplasmonic Ag/Fe bilayer structure is studied, fabricated, and characterized for the first time towards refractometric sensing, to the best of our knowledge. This configuration exhibits potential for enhancing refractometric sensitivity via magneto-optical modulation, thus paving the way towards a simpler, more accessible, and safe type of RI sensor with potential applications in chemical sensors and biosensors.

2025

Gold-coated silver nanorods on side-polished singlemode optical fibers for remote sensing at optical telecommunication wavelengths

Authors
dos Santos, PSS; Mendes, JP; Pastoriza-Santos, I; Juste, JP; de Almeida, JMMM; Coelho, LCC;

Publication
SENSORS AND ACTUATORS B-CHEMICAL

Abstract
The lower refractive index sensitivity (RIS) of plasmonic nanoparticles (NP) in comparison to their plasmonic thin films counterparts hindered their wide adoption for wavelength-based sensor designs, wasting the NP characteristic field locality. In this context, high aspect-ratio colloidal core-shell Ag@Au nanorods (NRs) are demonstrated to operate effectively at telecommunication wavelengths, showing RIS of 1720 nm/RIU at 1350 nm (O-band) and 2325 nm/RIU at 1550 nm (L-band), representing a five-fold improvement compared to similar Au NRs operating at equivalent wavelengths. Also, these NRs combine the superior optical performance of Ag with the Au chemical stability and biocompatibility. Next, using a side-polished optical fiber, we detected glyphosate, achieving a detection limit improvement from 724 to 85 mg/L by shifting from the O to the C/L optical bands. This work combines the significant scalability and cost-effective advantages of colloidal NPs with enhanced RIS, showing a promising approach suitable for both point-of-care and long-range sensing applications at superior performance than comparable thin film-based sensors in either environmental monitoring and other fields.

2024

Monitoring Reinforced Concrete Structures Using Iron Thin Film Coated Optical Fibre Sensors

Authors
Da Silva, M; Carvalho, PM; Mendes, P; De Almeida, MMM; Coelho, CC;

Publication
EPJ Web of Conferences

Abstract
Structural health monitoring (SHM) of reinforced concrete structures (RCS) is crucial for mitigating the consequences of their deterioration. By identifying and addressing the issues early, SHM helps reduce environmental impact, safeguard lives, and enhance economic resilience. Rebar corrosion is a leading cause of early RCS decay and optical fibre sensors (OFS) have been employed for its monitoring. Reflection optrodes using optical fibres where the tip is coated with iron (Fe) thin films offer a robust, long-lasting and straightforward solution. This study investigates the tracking of spectral changes during the Fe thin film corrosion, which has been neglected in the literature, in favour of tracking reflection changes from thin film spalling. A multimode fibre tip, coated with a thin Fe layer embedded in concrete, allows spectral changes to be observed during corrosion. A 100 nm thick Fe film was deposited using radio frequency magnetron sputtering on polished fibre tips. Corrosion was induced by applying salted water drops and allowing the fibre tip to dry. Corrosion monitoring was successful for both air-exposed and cement-embedded tips, with results compared to reflection simulations of Fe, Fe2O3, and Fe2O3 thin films. This study supports monitoring at different wavelengths, enhancing robustness, cost-effectiveness and earlier detection. © The Authors.

2024

A Comparative Study of Surface Plasmon and Tamm Plasmon Polaritons for Hydrogen Sensing

Authors
Almeida, AS; Carvalho, PM; Pastoriza Santos, I; Almeida, MMM; Coelho, CC;

Publication
EPJ Web of Conferences

Abstract
Due to the exponential increase in energy consumption and CO2 emissions, new sustainable energy sources have emerged, and hydrogen (H2) is one of them. Despite all the advantages, H2 has high flammability, so constant monitoring is essential. Two optical techniques were numerically studied and compared with the goal of H2 sensing: surface plasmon polaritons (SPP) and Tamm plasmon polaritons (TPP). The H2-sensitive material used was palladium (Pd) in both techniques. The SPP structure was found to have more sensitivity to H2 than TPP, 23 and 5nm/4vol% H2, respectively. However, the latter has lower FWHM, with the minimum of the band showing reflectivity near 0%. In addition, TPP also uses more cost-effective materials and can be interrogated at normal incidence with depolarized light. The potential of using each of these optical techniques for H2 sensing was demonstrated. © The Authors.

2024

Comparative Analysis of Ethanol Gas Sensors Based on Bloch Surface Wave and Surface Plasmon Resonance

Authors
Carvalho, PM; Almeida, AS; Mendes, P; Coelho, CC; De Almeida, MMM;

Publication
EPJ Web of Conferences

Abstract
Ethanol plays a crucial role in modern industrial processes and consumer products. Despite its presence in human activity, short and long-term exposure to gaseous ethanol poses risks to health conditions and material damage, making the control of its concentration in the atmosphere of high importance. Ethanol optical sensors based on electromagnetic surface waves (ESWs) are presented, with sensitivity to ethanol vapours being achieved by the inclusion of ethanol-adsorptive zinc oxide (ZnO) layers. The changes in optical properties modulate the resonant conditions of ESWs, enabling the tracking of ethanol concentration in the atmosphere. A comprehensive comparative study of sensor performance is carried out between surface plasmon resonance (SPR) and Bloch surface wave (BSW) based sensors. Sensor efficiency is simulated by transfer matrix method towards optimized figures of merit (FoM). Preliminary results validate ethanol sensitivity of BSW based sensor, showcasing a possible alternative to electromagnetic and plasmonic sensors. © The Authors.