Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Sobre
Download foto HD

Sobre

José Manuel Marques Martins de Almeida é licenciado em Física Aplicada  pela Universidade do Porto, Porto, Portugal. Doutorou-se em Física em 1998 na mesma universidade. Desde 2000 é Professor Associado do Departamento de Física, Universidade de Trás os Montes e Alto Douro, Vila Real, Portugal. Obteve o título de agregado em 2006. Atualmente é investigador do Centro de Fotónica Aplicada do INESC TEC, Porto. Os seus atuais interesses de investigação incluem sensores ópticos, espectroscopia e biofísica.

Tópicos
de interesse
Detalhes

Detalhes

002
Publicações

2021

Biosensors for Biogenic Amines: A Review

Autores
Vasconcelos, H; Coelho, LCC; Matias, A; Saraiva, C; Jorge, PAS; de Almeida, JMMM;

Publicação
BIOSENSORS-BASEL

Abstract
Biogenic amines (BAs) are well-known biomolecules, mostly for their toxic and carcinogenic effects. Commonly, they are used as an indicator of quality preservation in food and beverages since their presence in higher concentrations is associated with poor quality. With respect to BA’s metabolic pathways, time plays a crucial factor in their formation. They are mainly formed by microbial decarboxylation of amino acids, which is closely related to food deterioration, therefore, making them unfit for human consumption. Pathogenic microorganisms grow in food without any noticeable change in odor, appearance, or taste, thus, they can reach toxic concentrations. The present review provides an overview of the most recent literature on BAs with special emphasis on food matrixes, including a description of the typical BA assay formats, along with its general structure, according to the biorecognition elements used (enzymes, nucleic acids, whole cells, and antibodies). The extensive and significant amount of research that has been done to the investigation of biorecognition elements, transducers, and their integration in biosensors, over the years has been reviewed.

2021

Advances in plasmonic sensing at the nir—a review

Autores
Dos Santos, PSS; De Almeida, JMMM; Pastoriza Santos, I; Coelho, LCC;

Publicação
SENSORS

Abstract
Surface plasmon resonance (SPR) and localized surface plasmon resonance (LSPR) are among the most common and powerful label-free refractive index-based biosensing techniques available nowadays. Focusing on LSPR sensors, their performance is highly dependent on the size, shape, and nature of the nanomaterial employed. Indeed, the tailoring of those parameters allows the development of LSPR sensors with a tunable wavelength range between the ultra-violet (UV) and near infra-red (NIR). Furthermore, dealing with LSPR along optical fiber technology, with their low attenuation coefficients at NIR, allow for the possibility to create ultra-sensitive and long-range sensing networks to be deployed in a variety of both biological and chemical sensors. This work provides a detailed review of the key science underpinning such systems as well as recent progress in the development of several LSPR-based biosensors in the NIR wavelengths, including an overview of the LSPR phenomena along recent developments in the field of nanomaterials and nanostructure development towards NIR sensing. The review ends with a consideration of key advances in terms of nanostructure characteristics for LSPR sensing and prospects for future research and advances in this field. © 2021 by the authors. Licensee MDPI, Basel, Switzerland.

2021

Antimicrobial Activity of Myrtus communis L. and Rosmarinus officinalis L. Essential Oils against Listeria monocytogenes in Cheese

Autores
Saraiva, C; Silva, AC; Garcia Diez, J; Cenci Goga, B; Grispoldi, L; Silva, AF; Almeida, JM;

Publicação
FOODS

Abstract
Listeria monocytogenes has been referred to as a concern microorganism in cheese making due to its ability to survive and grow in a wide range of environmental conditions, such as refrigeration temperatures, low pH and high salt concentration at the end of the production process. Since cheese may be a potential hazard for consumers, especially high-risk consumers (e.g., pregnant, young children, the elderly, people with medical conditions), efforts of the dairy industry have been aimed at investigating new conservation techniques based on natural additives to meet consumers' demands on less processed foods without compromising the food safety. Thus, the aim of this study was to evaluate the efficacy of Myrtus communis L. (myrtle) and Rosmarinus officinalis L. (rosemary) essential oils (EO) against Listeria monocytogenes ATCC 679 spiked in sheep cheese before ripening. After the cheesemaking process, the samples were stored at 8 degrees C for 2 h, 1 d, 3 d, 14 d and 28 d. The composition of EO was identified by gas chromatography-mass spectrometry (GC-MS) analysis. Constituents such as 1,8-cineole, limonene, methyl-eugenol, alpha-pinene, alpha-terpineol, alpha-terpinolene and beta-pinene were present in both EO, accounting for 44.61% and 39.76% from the total of chemical compounds identified for myrtle and rosemary EO, respectively. According to the chemical classification, both EO were mainly composed of monoterpenes. Minimum inhibitory concentration (MIC) against L. monocytogenes was obtained at 31.25 mu L/mL to myrtle EO and at 0.40 mu L/mL to rosemary EO. Then, cheeses were inoculated with L. monocytogenes (Ca. 6 log CFU/mL) and EO was added at MIC value. The addition of rosemary and myrtle EO displayed lower counts of L. monocytogenes (p < 0.01) (about 1-2 log CFU/g) during the ripening period compared to control samples. Ripening only influences (p < 0.001) the growth of L. monocytogenes in control samples. Since rosemary and myrtle EO do not exert any negative impact on the growth of native microflora (p > 0.05), their use as natural antimicrobial additives in cheese demonstrated a potential for dairy processors to assure safety against L. monocytogenes.

2020

Femtosecond laser micromachining of Fabry-Perot interferometers in SMF-28 fiber for pressure sensing (Conference Presentation)

Autores
Viveiros, D; Almeida, JMd; Coelho, L; Maia, JM; Amorim, VA; Vasconcelos, H; Jorge, PAS; Marques, PVS;

Publicação
Optical Sensing and Detection VI

Abstract

2020

Femtosecond laser-written long period fibre gratings coated with titanium dioxide for improved sensitivity

Autores
Viveiros, D; de Almeida, JMMM; Coelho, L; Vasconcelos, H; Amorim, VA; Maia, JM; Jorge, PAS; Marques, PVS;

Publicação
OPTICAL SENSING AND DETECTION VI

Abstract

Teses
supervisionadas

2021

Estudo de soluções de sensoriamento da humectação de folhas

Autor
Davide Miguel Costa Machado

Instituição

2021

Self-adaptive electromagnetic energy harvesting system

Autor
Pedro Miguel Rocha Carneiro

Instituição
IES_Outra

2020

Development of optical biosensors for monitoring the deterioration of fresh meat and fish

Autor
Helena Catarina Araújo Soares Guedes Vasconcelos

Instituição
UTAD

2020

Development cost-effective solutions for multispectral interrogation of optical fibre sensors for bio-chemical applications

Autor
Paulo Sérgio Soares dos Santos

Instituição
UP-FEUP

2019

Estudo de adulteração de carne e peixe fresco

Autor
Maria João Pinho Moreira

Instituição
UTAD