Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
About

About

Jorge Diogo Ribeiro was born in Santo Tirso, Portugal, in 2001. He obtained a M.Sc. degree in Electrical and Computer Engineering from the Faculty of Engineering of the University of Porto (FEUP) in 2024. Currently, he is pursuing a Ph.D. degree in Electrical and Computer Engineering at FEUP and has a research scholarship at CRIIS - Centre for Robotics in Industry and Intelligent Systems from INESC TEC - Institute for Systems and Computer Engineering, Technology and Science. His main research interests are robotics, mobile robots, control, trajectory planning, and localization and mapping.

Interest
Topics
Details

Details

  • Name

    Jorge Diogo Ribeiro
  • Role

    Research Assistant
  • Since

    29th August 2022
Publications

2025

From Competition to Classroom: A Hands-on Approach to Robotics Learning

Authors
Lopes, MS; Ribeiro, JD; Moreira, AP; Rocha, CD; Martins, JG; Sarmento, JM; Carvalho, JP; Costa, PG; Sousa, RB;

Publication
IEEE International Conference on Autonomous Robot Systems and Competitions, ICARSC 2025, Funchal, Portugal, April 2-3, 2025

Abstract
Robotics education plays a crucial role in developing STEM skills. However, university-level courses often emphasize theoretical learning, which can lead to decreased student engagement and motivation. In this paper, we tackle the challenge of providing hands-on robotics experience in higher education by adapting a mobile robot originally designed for competitions to be used in laboratory classes. Our approach integrates real-world robot operation into coursework, bridging the gap between simulation and physical implementation while maintaining accessibility. The robot's software is developed using ROS, and its effectiveness is assessed through student surveys. The results indicate that the platform increases student engagement and interest in robotics topics. Furthermore, feedback from teachers is also collected and confirmed that the platform boosts students' confidence and understanding of robotics. © 2025 IEEE.

2025

A Nonlinear Model Predictive Control Strategy for Trajectory Tracking of Omnidirectional Robots

Authors
Ribeiro, J; Sobreira, H; Moreira, A;

Publication
Lecture Notes in Electrical Engineering

Abstract
This paper presents a novel Nonlinear Model Predictive Controller (NMPC) architecture for trajectory tracking of omnidirectional robots. The key innovation lies in the method of handling constraints on maximum velocity and acceleration outside of the optimization process, significantly reducing computation time. The controller uses a simplified process model to predict the robot’s state evolution, enabling real-time cost function minimization through gradient descent methods. The cost function penalizes position and orientation errors as well as control effort variation. Experimental results compare the performance of the proposed controller with a generic Proportional-Derivative (PD) controller and a NMPC with integrated optimization constraints. The findings reveal that the proposed controller achieves higher precision than the PD controller and similar precision to the NMPC with integrated constraints, but with substantially lower computational effort. © The Author(s), under exclusive license to Springer Nature Switzerland AG 2025.

2025

Parallel Path Planning for Multi-Robot Coordination

Authors
Ribeiro, J; Brilhante, M; Matos, DM; Silva, A; Sobreira, H; Costa, P;

Publication
IEEE International Conference on Autonomous Robot Systems and Competitions, ICARSC

Abstract
Multi-robot coordination aims to synchronize robots for optimized, collision-free paths in shared environments, addressing task allocation, collision avoidance, and path planning challenges. The Time Enhanced A* (TEA*) algorithm addresses multi-robot pathfinding offering a centralized and sequential approach. However, its sequential nature can lead to order-dependent variability in solutions. This study enhances TEA* through multi-threading, using thread pooling and parallelization techniques via OpenMP, and a sensitivity analysis enabling parallel exploration of robot-solving orders to improve robustness and the likelihood of finding efficient, feasible paths in complex environments. The results show that this approach improved coordination efficiency, reducing replanning needs and simulation time. Additionally, the sensitivity analysis assesses TEA*'s scalability across various graph sizes and number of robots, providing insights into how these factors influence the efficiency and performance of the algorithm. © 2025 IEEE.