Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Interest
Topics
Details

Details

  • Nationality

    Portugal
  • Centre

    Applied Photonics
  • Contacts

    +351220402301
    joao.p.mendes@inesctec.pt
001
Publications

2022

Analysis of the Relative Humidity Response of Hydrophilic Polymers for Optical Fiber Sensing

Authors
Dias, B; Carvalho, J; Mendes, JP; Almeida, JMMM; Coelho, LCC;

Publication
Polymers

Abstract
Relative humidity (RH) monitorization is of extreme importance on scientific and industrial applications, and optical fiber sensors (OFS) may provide adequate solutions. Typically, these kinds of sensors depend on the usage of humidity responsive polymers, thus creating the need for the characterization of the optical and expansion properties of these materials. Four different polymers, namely poly(vinyl alcohol), poly(ethylene glycol), Hydromed™ D4 and microbiology agar were characterized and tested using two types of optical sensors. First, optical fiber Fabry–Perot (FP) tips were made, which allow the dynamical measurement of the polymers’ response to RH variations, in particular of refractive index, film thickness, and critical deliquescence RH. Using both FP tips and Long-Period fiber gratings, the polymers were then tested as RH sensors, allowing a comparison between the different polymers and the different OFS. For the case of the FP sensors, the PEG tips displayed excellent sensitivity above 80%RH, outperforming the other polymers. In the case of LPFGs, the 10% (wt/wt) PVA one displayed excellent sensitivity in a larger working range (60 to 100%RH), showing a valid alternative to lower RH environment sensing.

2021

Label-Free Anti-Human IgG Biosensor Based on Chemical Modification of a Long Period Fiber Grating Surface

Authors
Mendes, JP; Coelho, LCC; Pereira, VP; Azenha, MA; Jorge, PAS; Pereira, CM;

Publication
Chemistry Proceedings

Abstract
This work introduces a method specially developed to produce a biorecognition element based on modified Stöber silica nanoparticles by the covalent immobilization of the human IgG. The sensing structure is based on long period fiber gratings (LPFG), specially developed to allow the interaction of the electromagnetic wave with the target analytes through its evanescent field. The surface was modified by the immobilization of the IgG-modified nanoparticles serving has recognition elements for specific target molecules. The resulting configuration was tested in the presence of anti-human IgG, recording the refractometric response of the modified LPFG in contact with different amounts of analyte. The selectivity of the sensor was also assessed.

2021

Optical Biosensor for the Detection of Hydrogen Peroxide in Milk

Authors
Vasconcelos, H; Matias, A; Jorge, P; Saraiva, C; Mendes, J; Araújo, J; Dias, B; Santos, P; Almeida, JMMM; Coelho, LCC;

Publication
Chemistry Proceedings

Abstract
Over the years, the food industry’s concern to provide safe food that does not cause harm or illness to consumers has increased. The growing demand for the detection of compounds that can contaminate food is increasingly important. Hydrogen peroxide is frequently used as a substance to control the growth of microorganisms in milk, thus increasing its shelf life. Here, a strategy is presented for the detection of hydrogen peroxide as a milk adulterant, using a single shot membrane sensor. The lowest concentration measured with this technique was 0.002% w/w of H2O2 in semi-fat milk.

2021

Characterization and Comparison of the Relative Humidity Response of Hydromorphic Polymers in Long-Period Fiber Grating Structures

Authors
Dias, B; Mendes, JP; de Almeida, JMMM; Coelho, LCC;

Publication
Chemistry Proceedings

Abstract
Relative humidity monitorization is of extreme importance on scientific and industrial applications, and fiber optics-based sensors may provide solutions where other types of sensors have limitations. In this work, fiber optics’ sensors were fabricated by combining Long-Period Fiber Gratings with three different humidity-responding polymers, namely Poly(vinyl alcohol), Poly(ethylene glycol) and Hydromed™ D4. The performance of the multiple sensors was experimentally tested and crossed with numerical simulations, which provide a comparison with the expected response given the optical properties of the materials.

2020

Colorimetry-based system for gaseous carbon dioxide detection: Membrane optimization

Authors
Mendes, JP; Coelho, L; Pereira, CM; Jorge, PAS;

Publication
U.Porto Journal of Engineering

Abstract
The study of sensing materials to the detection of carbon dioxide (CO2) was achieved using p-nitrophenol (pNPh) as a colorimetric indicator. The sensing material was polymerized (NPLn), functionalized with 3-triethoxysilyl propyl isocyanate (IPTES) which sensitivity was tested in the form of a membrane as is and encapsulated in hollow silica nanoparticles. The sensing membranes were tested in a closed gas system comprising very precise flow controllers to deliver different concentrations of CO2 (vs. N2). The combination of the sensing membranes with multimode optical fibers and a dual-wavelength diode (LED) allows the measurement of the CO2 through the analysis of the induced absorbance changes with a self-referenced ratiometric scheme. The analysis of the sensing materials have shown significant changes in their chemical and physical properties and the results attest these materials with a strong potential for assessing CO2 dynamics in environmental, medical, and industrial applications.