Detalhes
Nome
João Pedro MendesCargo
Investigador AuxiliarDesde
19 outubro 2016
Nacionalidade
PortugalCentro
Centro de Fotónica AplicadaContactos
+351220402301
joao.p.mendes@inesctec.pt
2023
Autores
Vasconcelos, H; Matias, A; Mendes, J; Araujo, J; Dias, B; Jorge, PAS; Saraiva, C; de Almeida, JMMM; Coelho, LCC;
Publicação
TALANTA
Abstract
Hydrogen peroxide is usually added to products to delay the development of microorganisms mainly in milk, hence increasing its stability over time, however the side effects can become devastating to human health.A technique is presented consisting of detecting hydrogen peroxide as an adulterant in milk through a sensor where pretreatment of the sample is not necessary, using a single use membrane. The detection of hydrogen peroxide in fresh-raw, whole, semi-skimmed and skimmed milk was performed using a luminol chem-iluminescence reaction.For hydrogen peroxide water solutions, a linear response was attained from 1.0 x 10-4 to 9.0 x 10-3 %w/w and an LOD (limit of detection) of 3.0 x 10-5 %w/w was determined. An R-squared value of 0.97 and a relative standard deviation lower than 10%, were achieved.Hydrogen peroxide concentration as low as 1.0 x 10-3 %w/w was measured for fresh-raw, skim and whole milk and for semi-skimmed milk, as low as 2.0 x 10-3 %w/w.The methodology presented, as long as our knowledge, is original, rapid, ecological and inexpensive. In regard of the sensitivity obtained, the methodology has great possibility to be applied in the detection of hydrogen peroxide in several areas. It is envisaged monitoring of food quality, agriculture systems and environment pollution.
2023
Autores
Dos Santos, PSS; Mendes, JP; Dias, B; Perez-Juste, J; De Almeida, JMMM; Pastoriza-Santos, I; Coelho, LCC;
Publicação
SENSORS
Abstract
Biochemical-chemical sensing with plasmonic sensors is widely performed by tracking the responses of surface plasmonic resonance peaks to changes in the medium. Interestingly, consistent sensitivity and resolution improvements have been demonstrated for gold nanoparticles by analyzing other spectral features, such as spectral inflection points or peak curvatures. Nevertheless, such studies were only conducted on planar platforms and were restricted to gold nanoparticles. In this work, such methodologies are explored and expanded to plasmonic optical fibers. Thus, we study-experimentally and theoretically-the optical responses of optical fiber-doped gold or silver nanospheres and optical fibers coated with continuous gold or silver thin films. Both experimental and numerical results are analyzed with differentiation methods, using total variation regularization to effectively minimize noise amplification propagation. Consistent resolution improvements of up to 2.2x for both types of plasmonic fibers are found, demonstrating that deploying such analysis with any plasmonic optical fiber sensors can lead to sensing resolution improvements.
2023
Autores
da Silva, PM; Mendes, JP; Coelho, LCC; de Almeida, JMMM;
Publicação
CHEMOSENSORS
Abstract
Reinforced concrete structures are prevalent in infrastructure and are of significant economic and social importance to humanity. However, they are prone to decay from cement paste carbonation. pH sensors have been developed to monitor cement paste carbonation, but their adoption by the industry remains limited. This work introduces two new methods for monitoring cement paste carbonation in real time that have been validated through the accelerated carbonation of cement paste samples. Both configurations depart from traditional pH monitoring. In the first configuration, the carbonation depth of a cement paste sample is measured using two CO2 optical fiber sensors. One sensor is positioned on the surface of the sample, while the other is embedded in the middle. As the carbonation depth progresses and reaches the embedded CO2 sensor, the combined response of the sensors changes. In the second configuration, a multimode fiber is embedded within the paste, and its carbonation is monitored by observing the increase in reflected light intensity (1.6-18%) resulting from the formation of CaCO3. Its applicability in naturally occurring carbonation is tested at concentrations of 3.2% CO2, and the influence of water is positively evaluated; thus, this setup is suitable for real-world testing and applications.
2023
Autores
Cunha, C; Assuncao, AS; Monteiro, CS; Leitao, C; Mendes, JP; Silva, S; Frazao, O; Novais, S;
Publicação
2023 IEEE 7TH PORTUGUESE MEETING ON BIOENGINEERING, ENBENG
Abstract
Using surface resonance (SPR) as a sensitivity enhancer, this work describes the development of a transmissive multimode optical fiber sensor with a gold (Au) thin film that measures glucose concentration. The fiber's cladding was initially removed, and an Au layer was then sputtered onto its surface to simultaneously excite SPR and reflect light, making the SPR sensor extremely sensitive to changes in the environment's refractive index. A range of glucose concentrations, from 0.0001 to 0.5000 g/ml, were tested on the sensor. A maximum sensitivity of 161.302 nm/(g/mL) was attained for the lowest glucose concentration, while the highest concentration yielded a sensitivity of 312.000 nm/(g/mL). The proposed sensor's compact size, high sensitivity, good stability and practicality make it a promising candidate for a range of applications, including detecting diabetes.
2023
Autores
dos Santos, SS; Mendes, J; de Almeida, MMM; Pastoriza Santos, I; Coelho, CC;
Publicação
Proceedings of SPIE - The International Society for Optical Engineering
Abstract
The increasing demand for precise chemical and biological sensing has led to the development of highly efficient plasmonic optical fiber sensors. Therefore, it is essential to optimize and match the operating wavelength region of both the optical fiber configuration and localized surface plasmon resonance of nanoparticles (NPs). This can be achieved by developing NPs that can reach resonance at near-infrared wavelengths, where refractive index sensitivity is enhanced, and silica optical fibers have lower losses. High aspect-ratio bimetallic Au@Ag nanorods and different side-polished fiber structures are tested using numerical simulations. The selected optical fiber configuration was based on a side-polished fiber with a 1 mm polished section. It is compared power losses and power at the NP interface for two configurations: a step-index single-mode fiber (SMF) with core/cladding diameters of 8.2/125 µm and a multimode graded-index fiber (GIF) with 62.5/125 µm at various polishing depths. The results showed that the best performance for both configurations was achieved at similar polishing depths, namely 59.5 and 55.2 µm for the SMF and GIF, respectively. The optical impact of retardation effects due to the proximity with the fiber structure were also observed, which caused a reduction in sensitivity from 1750 nm/RIU to 1500 nm/RIU and a red-shift of around 70 nm. © 2023 SPIE.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.