Cookies Policy
We use cookies to improve our site and your experience. By continuing to browse our site you accept our cookie policy. Find out More
Close
  • Menu
About

About

Adjunct professor at Polytechnic Institute of Bragança, Department of Electrotechnics.

Interest
Topics
Details

Details

Publications

2017

Brain emotional learning based control of a SDOF structural system with a MR damper

Authors
César, MB; Gonçalves, J; Coelho, J; De Barros, RC;

Publication
Lecture Notes in Electrical Engineering

Abstract
This paper describes the application of a Brain Emotional Learning (BEL) controller to improve the response of a SDOF structural system under an earthquake excitation using a magnetorheological (MR) damper. The main goal is to study the performance of a BEL based semi-active control system to generate the control signal for a MR damper. The proposed approach consists of a two controllers: a primary controller based on a BEL algorithm that determines the desired damping force from the system response and a secondary controller that modifies the input current to the MR damper to generate a reference damping force. A parametric model of the damper is used to predict the damping force based on the piston motion and also the current input. A Simulink model of the structural system is developed to analyze the effectiveness of the semi-active controller. Finally, the numerical results are presented and discussed. © Springer International Publishing Switzerland 2017.

2017

Comparative Analysis between LDR and HDR Images for Automatic Fruit Recognition and Counting

Authors
Pinho, TM; Coelho, JP; Oliveira, JB; Cunha, JB;

Publication
Journal of Sensors

Abstract
Precision agriculture is gaining an increasing interest in the current farming paradigm. This new production concept relies on the use of information technology (IT) to provide a control and supervising structure that can lead to better management policies. In this framework, imaging techniques that provide visual information over the farming area play an important role in production status monitoring. As such, accurate representation of the gathered production images is a major concern, especially if those images are used in detection and classification tasks. Real scenes, observed in natural environment, present high dynamic ranges that cannot be represented by the common LDR (Low Dynamic Range) devices. However, this issue can be handled by High Dynamic Range (HDR) images since they have the ability to store luminance information similarly to the human visual system. In order to prove their advantage in image processing, a comparative analysis between LDR and HDR images, for fruits detection and counting, was carried out. The obtained results show that the use of HDR images improves the detection performance to more than 30% when compared to LDR.

2017

A Multilayer Model Predictive Control Methodology Applied to a Biomass Supply Chain Operational Level

Authors
Pinho, TM; Coelho, JP; Veiga, G; Moreira, AP; Cunha, JB;

Publication
Complexity

Abstract
Forest biomass has gained increasing interest in the recent years as a renewable source of energy in the context of climate changes and continuous rising of fossil fuels prices. However, due to its characteristics such as seasonality, low density, and high cost, the biomass supply chain needs further optimization to become more competitive in the current energetic market. In this sense and taking into consideration the fact that the transportation is the process that accounts for the higher parcel in the biomass supply chain costs, this work proposes a multilayer model predictive control based strategy to improve the performance of this process at the operational level. The proposed strategy aims to improve the overall supply chain performance by forecasting the system evolution using behavioural dynamic models. In this way, it is possible to react beforehand and avoid expensive impacts in the tasks execution. The methodology is composed of two interconnected levels that closely monitor the system state update, in the operational level, and delineate a new routing and scheduling plan in case of an expected deviation from the original one. By applying this approach to an experimental case study, the concept of the proposed methodology was proven. This novel strategy enables the online scheduling of the supply chain transport operation using a predictive approach.

2017

Model predictive control applied to a supply chain management problem

Authors
Pinho, TM; Coelho, JP; Moreira, AP; Boaventura Cunha, J;

Publication
Lecture Notes in Electrical Engineering

Abstract
Supply chains are ubiquitous in any commercial delivery systems. The exchange of goods and services, from different supply points to distinct destinations scattered along a given geographical area, requires the management of stocks and vehicles fleets in order to minimize costs while maintaining good quality services. Even if the operating conditions remain constant over a given time horizon, managing a supply chain is a very complex task. Its complexity increases exponentially with both the number of network nodes and the dynamical operational changes. Moreover, the management system must be adaptive in order to easily cope with several disturbances such as machinery and vehicles breakdowns or changes in demand. This work proposes the use of a model predictive control paradigm in order to tackle the above referred issues. The obtained simulation results suggest that this strategy promotes an easy tasks rescheduling in case of disturbances or anticipated changes in operating conditions. © Springer International Publishing Switzerland 2017.

2017

A new plant growth system rig based on thermodynamic solar energy: A study for energy efficiency assessment

Authors
Coelho, JP; Gonçalves, J; Braz César, M; Dias, J;

Publication
Lecture Notes in Electrical Engineering

Abstract
At the present there is a high pressure toward the improvement of all production processes. Those improvements can target distinct factors along the production chain. In particular, and due to recent tight energy efficiency policies, those that involve energy efficiency. As can be expected, agricultural processes are not immune to this tendency. Even more when dealing with indoor productions. In this context, this work presents an innovative system that aims to improve the energy efficiency of a trees growing platform. This improvement in energy consumption is accomplished by replacing an electric heating system by one based on thermodynamic panels. The assessment of the heating fluid caudal and its temperature was experimentally obtained by means of a custom made scaled prototype whose actuators status are commanded by a Fuzzy-based controller. The obtained results suggest that the change in the heating paradigm will lead to overall savings that can easily reach 60% on the energy bill. © Springer International Publishing Switzerland 2017.