Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
About

About

João M. Maia received the MSc degree in Physics Engineering from the University of Porto, Portugal in 2016. He is currently a PhD Physics student in the same instituion.

In 2015 he joined the research centre INESC TEC, where he has been working on femtosecond laser micromachining and fabrication of optofluidic devices.

Interest
Topics
Details

Details

  • Name

    João Miguel Maia
  • Role

    Assistant Researcher
  • Since

    15th October 2015
  • Nationality

    Portugal
  • Centre

    Applied Photonics
  • Contacts

    +351220402301
    joao.m.maia@inesctec.pt
003
Publications

2022

Femtosecond laser micromachining of suspended silica-core liquid-cladding waveguides inside a microfluidic channel

Authors
Maia, JM; Viveiros, D; Amorim, VA; Marques, PVS;

Publication
OPTICS AND LASERS IN ENGINEERING

Abstract
This work addresses the fabrication of straight silica-core liquid-cladding suspended waveguides inside a microfluidic channel through fs-laser micromachining. These structures enable the reconfiguration of the waveguide's mode profile and enhance the evanescent interaction between light and analyte. Further, their geometry resembles a tapered optical fiber with the added advantage of being monolithically integrated within a microfluidic platform. The fabrication process includes an additional post-processing thermal treatment responsible for smoothening the waveguide surface and reshaping it into a circular cross-section. Suspended waveguides with a minimum core diameter of 3.8 mu m were fabricated. Their insertion losses can be tuned and are mainly affected by mode mismatch between the coupling and suspended waveguides. The transmission spectrum was studied and it was numerically confirmed that it consists of interference between the guided LP01 mode and uncoupled light and of modal interference between the LP01 and LP02 modes.

2021

Mach-Zehnder Interferometer-Based Evanescent Refractometer Inscribed at the Surface of Eagle2000 by Femtosecond Laser Writing

Authors
Amorim, VA; Maia, JM; Viveiros, D; Marques, PVS;

Publication
IEEE SENSORS JOURNAL

Abstract
The potential of evanescent Mach-Zehnder interferometers, embedded in Eagle2000 substrates, as refractive index sensors was assessed. For that, femtosecond laser direct writing and wet etching were used to fabricate and expose the sensing arm at the surface of the glass substrate, while keeping the reference arm buried. From the analysis of the structures' spectral response, we found that the wavelength shift of the different order peaks increased greatly for refractive indices nearing that of the glass, indicating a greater overlap between the guided mode's evanescent field and the external medium. Therefore, a maximum sensitivity of 10271 nm/RIU was obtained at a refractive index of 1.491. The sensitivity in the refractive index range of water-based solutions was, on the other hand, limited to 446 +/- 39 nm/RIU. Due to the geometry of the device, applications with films deposited at the surface of the substrate and PDMS based microfluidic channels can be explored.

2021

Intensity-modulated refractometer based on mode-mismatch in surface waveguides inscribed by femtosecond laser direct writing

Authors
Amorim, VA; Viveiros, D; Maia, JM; Marques, PVS;

Publication
OPTICS AND LASER TECHNOLOGY

Abstract
Optical waveguides were fabricated at the surface of Eagle2000 glass substrates, using femtosecond laser direct writing and wet etching, and their potential as intensity-modulated refractometers was assessed. Through the analysis of their broadband spectral response to different refractive index oils, we observed that mode mismatch is present when the guided mode reaches the surface of the substrate and interacts with the external medium, thus enabling the use of such optical waveguides in refractive index sensing. Refractive indices equal to or greater than that of the substrate also induced a coupling mechanism that was shown not to be suitable in these devices. The device's wavelength of operation was found to be tunable by controlling the distance between the surface and the center of the optical waveguide. However, the sensitivity was seen to diminish by increasing the latter, being nonexistent for distances greater than 5.5 mu m. In this study, the maximum sensitivity values were found for a surface to core center distance between 1 and 2 mu m, in the biological range, and 2.5 to 3 mu m, for a refractive index nearing that of the substrate. Accordingly, maximum sensitivities of approximate to 25 dB/RIU and approximate to 1200 dB/RIU were found between 1.300 < n(D)(25)degrees(C) < 1.400 and 1.490 < n(D)(25)degrees(C) < 1.500, respectively.

2021

Loss mechanisms in femtosecond laser written optical waveguides

Authors
Marques, PVS; Amorim, VA; Maia, JM; Viveiros, D;

Publication
Proceedings of SPIE - The International Society for Optical Engineering

Abstract
Low loss optical waveguides are the key component for the fabrication of more complex integrated optics devices. In most works related to femtosecond laser written waveguides, the values presented give results at a single wavelength or in a narrow wavelength band; but some applications in optical sensing, for example, would benefit from waveguides having good propagation properties in a larger wavelength range. This paper presents results that allow one to gain insight into the major loss mechanisms present in laser written waveguides in two different types of glasses (fused silica and Eagle 2000 glass) and the dependence of those on the fabrication parameters. Finally, an example of application of broadband operating waveguides is given.

2021

Femtosecond laser micromachining of an optofluidics-based monolithic whispering-gallery mode resonator coupled to a suspended waveguide

Authors
Maia, JM; Amorim, VA; Viveiros, D; Marques, PVS;

Publication
SCIENTIFIC REPORTS

Abstract
A monolithic lab-on-a-chip fabricated by femtosecond laser micromachining capable of label-free biosensing is reported. The device is entirely made of fused silica, and consists of a microdisk resonator integrated inside a microfluidic channel. Whispering gallery modes are excited by the evanescent field of a circular suspended waveguide, also incorporated within the channel. Thermal annealing is performed to decrease the surface roughness of the microstructures to a nanometric scale, thereby reducing intrinsic losses and maximizing the Q-factor. Further, thermally-induced morphing is used to position, with submicrometric precision, the suspended waveguide tangent to the microresonator to enhance the spatial overlap between the evanescent field of both optical modes. With this fabrication method and geometry, the alignment between the waveguide and the resonator is robust and guaranteed at all instances. A maximum sensitivity of 121.5 nm/RIU was obtained at a refractive index of 1.363, whereas near the refractive index range of water-based solutions the sensitivity is 40 nm/RIU. A high Q-factor of 10(5) is kept throughout the entire measurement range.