Cookies Policy
We use cookies to improve our site and your experience. By continuing to browse our site you accept our cookie policy. Find out More
Close
  • Menu
About

About

João M. Maia received the MSc degree in Physics Engineering from the University of Porto, Portugal in 2016. He is currently a PhD Physics student in the same instituion.

In 2015 he joined the research centre INESC TEC, where he has been working on femtosecond laser micromachining and fabrication of optofluidic devices.

Interest
Topics
Details

Details

001
Publications

2017

Optimization of Broadband Y-Junction Splitters in Fused Silica by Femtosecond Laser Writing

Authors
Amorim, VA; Maia, JM; Alexandre, D; Marques, PVS;

Publication
IEEE PHOTONICS TECHNOLOGY LETTERS

Abstract
Optical Y-junction power splitters owe their inherent broadband spectral behavior to their design. However, depending on the fabrication technique employed, asymmetries in the junction might arise, perturbing its performance; this is the case in femtosecond laser written Y-junctions where one arm is typically written over the top of the other. In this letter, the spectral behavior of Y-junctions fabricated in fused silica by the femtosecond laser direct writing technique was analyzed and optimized for the first time, to the best of our knowledge. The junction arms output power balance as well as the corresponding spectral flatness between 1300 and 1600 nm is substantially increased by the implementation of an initial separation between the arms at the junction diverging point, enabling the manufacturing of balanced broadband Y-junctions.

2017

Real-Time Optical Monitoring of Etching Reaction of Microfluidic Channel Fabricated by Femtosecond Laser Direct Writing

Authors
Maia, JM; Amorim, VA; Alexandre, D; Marques, PVS;

Publication
JOURNAL OF LIGHTWAVE TECHNOLOGY

Abstract
Femtosecond laser direct writing is a three dimensional fabrication technique that can be applied to produce integrated optical components with high spatial resolution or microfluidic channels when combined with HF etching. The same fabrication technique can thus be employed to produce monolithic optofluidic devices for sensing applications. One of the most common sensing schemes involves evanescent optical interaction; therefore, the channel must meet some requirements regarding surface roughness, which will depend on the laser writing conditions, as described in this paper. However, of more significance is the distance between waveguiding medium and microfluidic channel that must be accurately defined. This control can be achieved by monitoring the etching reaction of a waveguide grating written a few microns from the channel, as introduced in this paper. In addition to its function as an etching monitor, the grating can also be used as a coarse refractive index sensor device.

2017

Monolithic Add–Drop Multiplexers in Fused Silica Fabricated by Femtosecond Laser Direct Writing

Authors
Amorim, VA; Maia, JM; Alexandre, D; Marques, PVS;

Publication
Journal of Lightwave Technology

Abstract