Cookies
Usamos cookies para melhorar nosso site e a sua experiência. Ao continuar a navegar no site, você aceita a nossa política de cookies. Ver mais
Fechar
  • Menu
Sobre

Sobre

João M. Maia terminou o Mestrado Integrado em Engenharia Fí­sica na Universidade do Porto, Portugal em 2016. É atualmente estudante do programa doutoral de Física da mesma instituição.

Desde 2015, pertence ao centro de investigação INESC TEC, onde trabalha em micromaquinação com laser femtossegundo e optofluídica.

Tópicos
de interesse
Detalhes

Detalhes

001
Publicações

2020

Magnetic field sensors in fused silica fabricated by femtosecond laser micromachining

Autores
Maia, JM; Amorim, VA; Viveiros, D; Marques, PVS;

Publicação
Journal of Physics: Photonics

Abstract

2020

Femtosecond laser direct written off-axis fiber Bragg gratings for sensing applications

Autores
Viveiros, D; Amorim, VA; Maia, JM; Silva, S; Frazão, O; Jorge, PAS; Fernandes, LA; Marques, PVS;

Publicação
Optics and Laser Technology

Abstract
First order off-axis fiber Bragg gratings (FBGs) were fabricated in a standard single mode fiber (SMF-28e) through femtosecond laser direct writing. A minimum offset distance between the grating and core center of 2.5 µm was found to create a multimode section, which supports two separate fiber modes (LP0,1 and LP1,1), each split into two degenerate polarization modes. The resulting structure breaks the cylindrical symmetry of the fiber, introducing birefringence (˜10-4) resulting in a polarization dependent Bragg wavelength for each mode. Based on the modal and birefringence behavior, three off-axis FBGs were fabricated with 3.0, 4.5 and 6.0 µm offsets from the core center, and then characterized in strain, temperature, and curvature. The tested off-axis FBGs exhibited a similar strain sensitivity of ~1.14 pm/µ? and a temperature sensitivity of ~12 pm/C. The curvature and orientation angle were simultaneously monitored by analyzing the intensity fluctuation and the wavelength shift of the LP1,1 Bragg resonance. A maximum curvature sensitivity of 0.53 dB/m-1 was obtained for the off-axis FBG with a 3.0 µm offset. © 2020 Elsevier Ltd

2019

Loss Mechanisms of Optical Waveguides Inscribed in Fused Silica by Femtosecond Laser Direct Writing

Autores
Amorim, VA; Maia, JM; Viveiros, D; Marques, PVS;

Publicação
Journal of Lightwave Technology

Abstract

2019

Advances in Fs-Laser Micromachining Towards the Development of Optofluidic Devices

Autores
Maia, JM; Amorim, VA; Alexandre, D; Marques, PVS;

Publicação
Springer Series in Optical Sciences

Abstract
In this chapter the developments made in femtosecond laser micromachining for applications in the fields of optofluidics and lab-on-a-chip devices are reviewed. This technology can be applied to a wide range of materials (glasses, crystals, polymers) and relies on a non-linear absorption process that leads to a permanent alteration of the material structure. This modification can induce, for instance, a smooth variation of the refractive index or generate etching selectivity, which can be used to form integrated optical circuits and microfluidic systems, respectively. Unlike conventional techniques, fs-laser micromachining offers a way to produce high-resolution three-dimensional components and integrate them in a monolithic approach. Recent advances made in two-photon polymerization have also enabled combination of polymeric structures with microfluidic channels, which can provide additional functionalities, such as fluid transport control. In particular, here it is emphasised the integration of microfluidic systems with optical layers and polymeric structures for the fabrication of miniaturized hybrid devices for chemical synthesis and biosensing. © 2019, Springer Nature Switzerland AG.

2019

Spectral Tuning of Long Period Fiber Gratings Fabricated by Femtosecond Laser Micromachining through Thermal Annealing

Autores
Viveiros, D; Almeida, JMMMd; Coelho, L; Vasconcelos, H; Amorim, VA; Maia, JM; Jorge, PAS;

Publicação
Proceedings

Abstract
A femtosecond laser direct writing system was developed to explore the fabrication of long-period fiber gratings (LPFGs) in SMF28 fibers. The LPFGs, showing the mode LP1,6 at 1500 nm, were exposed to high-temperature annealing up to 950 °C. Modifications in the refractive index (RI) modulation are observed through a blue-shift in the LPFG attenuation bands and above 850 °C, the mode LP1,7 appear at 1600 nm. The wavelength sensitivity to external RI from 1.300 to 1.452 was estimated for both modes before and after annealing. Greater sensitivity was found for the higher order mode in the entire range reaching 2400 nm/RIU around 1.440.