Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Interest
Topics
Details

Details

001
Publications

2022

Identifying the determinants and understanding their effect on the perception of safety, security, and comfort by pedestrians and cyclists: A systematic review

Authors
Ferreira, MC; Costa, PD; Abrantes, D; Hora, J; Felicio, S; Coimbra, M; Dias, TG;

Publication
TRANSPORTATION RESEARCH PART F-TRAFFIC PSYCHOLOGY AND BEHAVIOUR

Abstract
The continuous growth of the world population and its agglomeration in urban cities, demand an increasing need for mobility, which in turn contributes to the worsening of traffic congestion and pollution in cities. Therefore, it is necessary to promote active travel, such as walking and cycling. However, this is not an easy task, as pedestrians and cyclists are the most vulnerable link in the system, and low levels of safety, security and comfort can contribute to choosing private cars over active travel. Hence, it is essential to understand the determinants that affect the perceptions of pedestrians and cyclists, in order to support the definition of policies that promote the use of active modes of transport. Thus, this article fills an important gap in the literature by identifying and discussing the objective and subjective determinants that affect the perceptions of safety, security and comfort of pedestrians and cyclists, through a systematic review of the literature published in the last ten years. It followed the PRISMA statement guidelines and checklist, resulting in 68 relevant articles that were carefully analyzed. The results show that the perception of safety is negatively affected by fear of traffic-related injuries, fear of falling related to infra-structure and infrastructure maintenance, and negative behavior of drivers. Regarding security, crime was the major concern of pedestrians and cyclists, either with emphasis on the person or on personal property. With regard to comfort, high levels of air and noise pollution, lack of vege-tation, bad weather conditions, slopes and long commuting distances negatively affected the users' perception. The results also suggest that poor lighting affects all domains, providing a negative perception of safety, security and comfort. Similarly, the presence of people is seen as negatively influencing the perception of safety and comfort, while the absence of people nega-tively impacts the perception of security. Therefore, the findings achieved by this study are key to assist in the definition of transport policies and infrastructure creation in large smart cities. Additionally, new transport policies are proposed and discussed.

2020

Identifying Relevant Transfer-Connections from Entry-Only Automatic Fare Collection Data: The Case Study of Porto

Authors
Hora, J; Galvao, T; Camanho, A;

Publication
INTELLIGENT TRANSPORT SYSTEMS

Abstract
The synchronization of Public Transportation (PT) systems usually considers a simplified network to optimize the flows of passengers at the principal axes of the network. This work aims to identify the most relevant transfer-connections in a PT network. This goal is pursued with the development of a methodology to identify relevant transfer-connections from entry-only Automatic Fare Collection (AFC) data. The methodology has three main steps: the implementation of the Trip-Chaining-Method (TCM) to estimate the alighting stops of each AFC record, the identification of transfers, and finally, the selection of relevant transfer-connections. The adequacy of the methodology was demonstrated with its implementation to the case study of Porto. This methodology can also be applied to PT systems using entry-exit AFC data, and in that case, the TCM would not be required. © 2020, ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering.

2017

Estimation of Origin-Destination matrices under Automatic Fare Collection: The case study of Porto transportation system

Authors
Hora, J; Dias, TG; Camanho, A; Sobral, T;

Publication
Transportation Research Procedia

Abstract
Entry-only Automatic Fare Collection (AFC) systems are widely used in urban transports. Its main advantages include easy usability by passengers, improvement of the efficiency of revenue management, adequacy to integrate inter-modality approaches, easy cooperation between operators, systematic data collection and gathering tools, contributing to improve the planning process. This work starts with the literature review on applications of the Trip-Chaining Method (TCM) to the estimation of Origin-Destination (OD) matrices using entry-only AFC data. The main contribution of this study is to provide an OD matrix for the city of Porto, allowing to improve the quality of its public transport system. The paper reports the implementation of the TCM to estimate the alighting locations at the disaggregated level in the case study of Porto. The main assumptions adopted are: passengers start the next journey stage at or near the alighting location of their previous trip, passengers end the last trip of the day at the boarding location of the first trip of the day, passengers can only alight in the sequence of stops not yet traveled by the route / direction they boarded, passengers have a maximum interchange distance, above which the destination of that journey stage is not inferred. © 2017 The Authors. Published by Elsevier B.V.

2016

Improving the Service Level of Bus Transportation Systems: Evaluation and Optimization of Bus Schedules' Robustness

Authors
Hora, J; Dias, TG; Camanho, A;

Publication
EXPLORING SERVICES SCIENCE (IESS 2016)

Abstract
This study proposes an optimization model to improve the robustness of an existing bus schedule. Robustness represents the ability of schedules to absorb deviations from the timetable and to prevent their propagation through the daily operations. The model developed proposes an optimal assignment of arrival times and distribution of slacks among Time Control Points of a bus line, in order to minimize delays and anticipations from schedule. This required the use of data collected through GPS devices installed in buses, informing the location of buses during their daily operation. The robustness of bus schedules was evaluated through the quantification of delays and anticipations of real observations of bus shifts by comparison with the timetable. The performance measures used to evaluate robustness are the average delay (or anticipation) of buses by comparison with the timetable, and the probability that a passenger that arrives on time according to the timetable will miss the bus or have to wait more than a specified threshold at a Time Control Point. We also compared the improvement of the schedule proposed by the optimization model with the original schedule. The results obtained in a real-world case study, corresponding to a bus line operating in Porto, showed that the model could return an improved schedule for all performance measures considered when compared with the original schedule.

2015

A review of performance criteria to validate simulation models

Authors
Hora, J; Campos, P;

Publication
EXPERT SYSTEMS

Abstract
This study reviews performance criteria adequate to validate simulation models through the comparison of two quantitative data sets, concerning historical and simulated data. The criteria reviewed were organized according to its characteristics into the groups: error-based measures, information theory measures, information criteria, parametric tests, non-parametric tests, distance-based measures and combined measures. Each criterion is reviewed through its mathematic definition, its applications in literature and the identification of its advantages and drawbacks. The features assessed by each criterion are identified and discussed. This study provides a concise outline over the criteria reviewed, which can be used as a guide to help developers of simulation models into the decision on the most appropriate criteria to validate their models.