Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu


  • Name

    Inês Maria Alves
  • Role

    Research Assistant
  • Since

    12th December 2018
  • Nationality

  • Contacts



Modeling demand flexibility impact on the long-term adequacy of generation systems

Alves, IM; Carvalho, LM; Lopes, JAP;


This paper proposes a novel probabilistic model for quantifying the impact of demand flexibility (DF) on the long-term generation system adequacy via Sequential Monte Carlo Simulation (SMCS) method. Unlike load shedding, DF can be considered an important instrument to postpone bulk consumption from periods with limited reserves to periods with more generating capacity available, avoiding load shedding and increasing the integration of variable renewable generation, such as wind power. DF has been widely studied in terms of its contribution to the system's social welfare, resulting in numerous innovative approaches ranging from the flexibility modeling of individual electric loads to the definition of aggregation strategies for optimally deploying this lever in competitive markets. To add to the current state-of-the-art, a new model is proposed to quantify DF impact on the traditional reliability indices, such as the Loss of Load Expectation (LOLE) and the Expected Energy Not Supplied (EENS), enabling a new perspective for the DF value. Given the diverse mechanisms associated with DF of different consumer types, the model considers the uncertainties associated with the demand flexibility available in each hour of the year and with the rebound effect, i.e., the subsequent change of consumption patterns following a DF mobilization event. Case studies based on a configuration of the IEEE-RTS 79 test system with wind power demonstrate that the DF can substantially improve the reliability indices of the static and operational reserve while decreasing the curtailment of variable generation cause by unit scheduling priorities or by short-term generation/demand imbalances.