Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
About
Download Photo HD

About

I am a post-doc at the Cryprography and Information Security group, HasLab, INESC/TEC, working with Manuel Barbosa. My main research interests are on areas related to Secure Multi-party Computation, Formal Methods, Functional Programming, Bidirectional Programming or Model Transformations.

Previously, I have been a post-doc at:

I completed my PhD on Bidirectional Data Transformation by Calculation at theUniversity of Minho with Alcino Cunha.

Find more here.

Interest
Topics
Details

Details

  • Name

    Hugo Pereira Pacheco
  • Since

    01st November 2011
  • Nationality

    Portugal
  • Contacts

    +351253604440
    hugo.p.pacheco@inesctec.pt
002
Publications

2018

Enforcing ideal-world leakage bounds in real-world secret sharing MPC frameworks

Authors
Almeida, JB; Barbosa, M; Barthe, G; Pacheco, H; Pereira, V; Portela, B;

Publication
Proceedings - IEEE Computer Security Foundations Symposium

Abstract
We give a language-based security treatment of domain-specific languages and compilers for secure multi-party computation, a cryptographic paradigm that enables collaborative computation over encrypted data. Computations are specified in a core imperative language, as if they were intended to be executed by a trusted-third party, and formally verified against an information-flow policy modelling (an upper bound to) their leakage. This allows non-experts to assess the impact of performance-driven authorized disclosure of intermediate values. Specifications are then compiled to multi-party protocols. We formalize protocol security using (distributed) probabilistic information-flow and prove security-preserving compilation: Protocols only leak what is allowed by the source policy. The proof exploits a natural but previously missing correspondence between simulation-based cryptographic proofs and (composable) probabilistic non-interference. Finally, we extend our framework to justify leakage cancelling, a domain-specific optimization that allows to first write an efficient specification that fails to meet the allowed leakage upper-bound, and then apply a probabilistic pre-processing that brings leakage to the acceptable range. © 2018 IEEE.

2018

Teaching how to program using automated assessment and functional glossy games (experience report)

Authors
Almeida, JB; Cunha, A; Macedo, N; Pacheco, H; Proenca, J;

Publication
Proceedings of the ACM on Programming Languages

Abstract

2017

Towards new data management platforms for a DSO as market enabler – UPGRID Portugal demo

Authors
Alonso, A; Couto, R; Pacheco, H; Bessa, R; Gouveia, C; Seca, L; Moreira, J; Nunes, P; Matos, PG; Oliveira, A;

Publication
CIRED - Open Access Proceedings Journal

Abstract

2017

Jasmin: High-Assurance and High-Speed Cryptography

Authors
Almeida, JB; Barbosa, M; Barthe, G; Blot, A; Grégoire, B; Laporte, V; Oliveira, T; Pacheco, H; Schmidt, B; Strub, PY;

Publication
Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security, CCS 2017, Dallas, TX, USA, October 30 - November 03, 2017

Abstract

2016

A Tool-Chain for High-Assurance Cryptographic Software

Authors
Almeida, J; Barbosa, M; Pacheco, H; Pereira, V;

Publication
ERCIM NEWS

Abstract
Cryptography is an inherently interdisciplinary area and the development of high-quality cryptographic software is a time-consuming task drawing on skills from mathematics, computer science and electrical engineering, only achievable by highly skilled programmers. The challenge is to map high-level cryptographic specifications phrased using mathematical abstractions into efficient implementations at the level of C or assembly that can be deployed on a target computational platform, whilst adhering to the specification both in terms of correctness and security. The High Assurance Software Laboratory at INESC-TEC maintains a domain-specific toolchain for the specification, implementation and verification of cryptographic software centred on CAO, a cryptography analyses and operations-aware language.

Supervised
thesis

2018

Conceção de uma plataforma genérica para as Utilities

Author
Xavier Passos Rodrigues

Institution
UM