Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Interest
Topics
Details

Details

  • Name

    Hermano Bernardo
  • Role

    Assistant Researcher
  • Since

    14th November 2023
002
Publications

2025

The role of interventions in enhancing indoor environmental quality in higher education institutions for student well-being and academic performance

Authors
Andrade, C; Stathopoulos, S; Mourato, S; Yamasaki, N; Paschalidou, A; Bernardo, H; Papaloizou, L; Charalambidou, I; Achilleos, S; Psistaki, K; Sarris, E; Carvalho, F; Chaves, F;

Publication
CURRENT OPINION IN ENVIRONMENTAL SCIENCE & HEALTH

Abstract
Students spend 30 % of their lives indoors; therefore, a healthy indoor air quality (IAQ) is crucial for their well-being and academic performance in Higher Education Institutions. This review highlights the interventions for improving Indoor Enviclassrooms considering climate change by discussing ventilation techniques, phytoremediation, and building features designed to improve noise levels, thermal comfort, lighting and to reduce odor. Awareness and literacy are enhanced through the student's engagement by offering real-time monitoring knowledge of Indoor Environmental Quality using inexpensive smart sensors combined with IoT technology. Eco-friendly strategies are also highlighted to promote sustainability.

2025

Integrating Machine Learning and Digital Twins for Enhanced Smart Building Operation and Energy Management: A Systematic Review

Authors
Palley, B; Poças Martins, J; Bernardo, H; Rossetti, R;

Publication
Urban Science

Abstract
Artificial Intelligence has recently expanded across various applications. Machine Learning, a subset of Artificial Intelligence, is a powerful technique for identifying patterns in data to support decision making and managing the increasing volume of information. Simultaneously, Digital Twins have been applied in several fields. In this context, combining Digital Twins, Machine Learning, and Smart Buildings offers significant potential to improve energy efficiency and operational effectiveness in building management. This review aims to identify and analyze studies that explore the application of Machine Learning and Digital Twins for operation and energy management in Smart Buildings, providing an updated perspective on these rapidly evolving topics. The methodology follows the PRISMA guidelines for systematic reviews, using Scopus and Web of Science databases. This review identifies the main concepts, objectives, and trends emerging from the literature. Furthermore, the findings confirm the recent growth in research combining Machine Learning and Digital Twins for building management, revealing diverse approaches, tools, methods, and challenges. Finally, this paper highlights existing research gaps and outlines opportunities for future investigation.

2022

Benchmarking of Load Forecasting Methods Using Residential Smart Meter Data

Authors
Sousa, JC; Bernardo, H;

Publication
APPLIED SCIENCES-BASEL

Abstract
As the access to consumption data available in household smart meters is now very common in several developed countries, this kind of information is assuming a providential role for different players in the energy sector. The proposed study was applied to data available from the Smart Meter Energy Consumption Data in the London Households dataset, provided by UK Power Networks, containing half-hourly readings from an original sample of 5567 households (71 households were hereby carefully selected after a justified filtering process). The main aim is to forecast the day-ahead load profile, based only on previous load values and some auxiliary variables. During this research different forecasting models are applied, tested and compared to allow comprehensive analyses integrating forecasting accuracy, processing times and the interpretation of the most influential features in each case. The selected models are based on Multivariate Adaptive Regression Splines, Random Forests and Artificial Neural Networks, and the accuracies resulted from each model are compared and confronted with a baseline (Naive model). The different forecasting approaches being evaluated have been revealed to be effective, ensuring a mean reduction of 15% in Mean Absolute Error when compared to the baseline. Artificial Neural Networks proved to be the most accurate model for a major part of the residential consumers.

2021

A Data-Driven Approach to Forecasting Heating and Cooling Energy Demand in an Office Building as an Alternative to Multi-Zone Dynamic Simulation

Authors
Godinho, X; Bernardo, H; de Sousa, JC; Oliveira, FT;

Publication
APPLIED SCIENCES-BASEL

Abstract
Nowadays, as more data is now available from an increasing number of installed sensors, load forecasting applied to buildings is being increasingly explored. The amount and quality of resulting information can provide inputs for smarter decisions when managing and operating office buildings. In this article, the authors use two data-driven methods (artificial neural networks and support vector machines) to predict the heating and cooling energy demand in an office building located in Lisbon, Portugal. In the present case-study, these methods prove to be an accurate and appealing alternative to the use of accurate but time-consuming multi-zone dynamic simulation tools, which strongly depend on several parameters to be inserted and user expertise to calibrate the model. Artificial neural networks and support vector machines were developed and parametrized using historical data and different sets of exogenous variables to encounter the best performance combinations for both the heating and cooling periods of a year. In the case of support vector regression, a variation introduced simulated annealing to guide the search for different combinations of hyperparameters. After a feature selection stage for each individual method, the results for the different methods were compared, based on error metrics and distributions. The outputs of the study include the most suitable methodology for each season, and also the features (historical load records, but also exogenous features such as outdoor temperature, relative humidity or occupancy profile) that led to the most accurate models. Results clearly show there is a potential for faster, yet accurate machine-learning based forecasting methods to replace well-established, very accurate but time-consuming multi-zone dynamic simulation tools to forecast building energy consumption.

2020

Forecasting heating and cooling energy demand in an office building using machine learning methods

Authors
Godinho, X; Bernardo, H; Oliveira, FT; Sousa, JC;

Publication
Proceedings - 2020 International Young Engineers Forum, YEF-ECE 2020

Abstract
Forecasting heating and cooling energy demand in buildings plays a critical role in supporting building management and operation. Thus, analysing the energy consumption pattern of a building could help in the design of potential energy savings and also in operation fault detection, while contributing to provide proper indoor environmental conditions to the building's occupants.This paper aims at presenting the main results of a study consisting in forecasting the hourly heating and cooling demand of an office building located in Lisbon, Portugal, using machine learning models and analysing the influence of exogenous variables on those predictions. In order to forecast the heating and cooling demand of the considered building, some traditional models, such as linear and polynomial regression, were considered, as well as artificial neural networks and support vector regression, oriented to machine learning. The input parameters considered in the development of those models were the hourly heating and cooling energy historical records, the occupancy, solar gains through glazing and the outside dry-bulb temperature.The models developed were validated using the mean absolute error (MAE) and the root mean squared error (RMSE), used to compare the values obtained from machine learning models with data obtained through a building energy simulation performed on an adequately calibrated model.The proposed exploratory analysis is integrated in a research project focused on applying machine learning methodologies to support energy forecasting in buildings. Hence, the research line proposed in this article corresponds to a preliminary project task associated with feature selection/extraction and evaluation of potential use of machine learning methods. © 2020 IEEE.