Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu




Managing Disruptions in a Biomass Supply Chain: A Decision Support System Based on Simulation/Optimisation

Piqueiro, H; Gomes, R; Santos, R; de Sousa, JP;


To design and deploy their supply chains, companies must naturally take quite different decisions, some being strategic or tactical, and others of an operational nature. This work resulted in a decision support system for optimising a biomass supply chain in Portugal, allowing a more efficient operations management, and enhancing the design process. Uncertainty and variability in the biomass supply chain is a critical issue that needs to be considered in the production planning of bioenergy plants. A simulation/optimisation framework was developed to support decision-making, by combining plans generated by a resource allocation optimisation model with the simulation of disruptive wildfire scenarios in the forest biomass supply chain. Different scenarios have been generated to address uncertainty and variability in the quantity and quality of raw materials in the different supply nodes. Computational results show that this simulation/optimisation approach can have a significant impact in the operations efficiency, particularly when disruptions occur closer to the end of the planning horizon. The approach seems to be easily scalable and easy to extend to other sectors.