Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
About

About

Gilberto Bernardes holds a Ph.D. in Digital Media (2014) by the Universidade do Porto under the auspices of the University of Texas at Austin and a Master of Music 'cum Lauda' (2008) by Amsterdamse Hogeschool voor de Kunsten. Bernardes is currently an Assistant Professor at the Universidade do Porto and a Senior Researcher at the INESC TEC where he leads the Sound and Music Computing Lab. He counts with more than 90 publications, of which 14 are articles in peer-reviewed journals with a high impact factor (mostly Q1 and Q2 in Scimago) and fourteen chapters in books. Bernardes interacted with 152 international collaborators in co-authoring scientific papers. Bernardes has been continuously contributing to the training of junior scientists, as he is currently supervising six Ph.D. thesis and concluded 40+ Master dissertations.


He received nine awards, including the Fraunhofer Portugal Prize for the best Ph.D. thesis and several best paper awards at conferences (e.g., DCE and CMMR). He has participated in 12 R&D projects as a senior and junior researcher. In the past eight years, following his PhD defense, Bernardes was able to attract competitive funding to conduct a post-doctoral project funded by FCT and an exploratory grant for a market-based R&D prototype. Currently, he is leading the Portuguese team (Work Package leader) at INESC TEC on the Horizon Europe project EU-DIGIFOLK, and the Erasmus+ project Open Minds. His latest contribution focuses on cognitive-inspired tonal music representations and sound synthesis In his artistic activities, Bernardes has performed in some distinguished music venues such as Bimhuis, Concertgebouw, Casa da Música, Berklee College of Music, New York University, and Seoul Computer Music Festival.

Interest
Topics
Details

Details

004
Publications

2023

The Singing Bridge: Sonification of a Stress-Ribbon Footbridge

Authors
Torresan, C; Bernardes, G; Caetano, E; Restivo, T;

Publication
Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering, LNICST

Abstract
Stress-ribbon footbridges are often prone to excessive vibrations induced by environmental phenomena (e.g., wind) and human actions (e.g., walking). This paper studies a stress-ribbon footbridge at the Faculty of Engineering of the University of Porto (FEUP) in Portugal, where different degrees of vertical vibrations are perceptible in response to human actions. We adopt sonification techniques to create a sonic manifestation that shows the footbridge’s dynamic response to human interaction. Two distinct sonification techniques – audification and parameter mapping – are adopted to provide intuitive access to the footbridge dynamics from low-level acceleration data and higher-level spectral analysis. In order to evaluate the proposed sonification techniques in exposing relevant information about human actions on the footbridge, an online perceptual test was conducted to assess the understanding of the three following dimensions: 1) the number of people interacting with the footbridge, 2) their walking speed, and 3) the steadiness of their pace. The online perceptual test was conducted with and without a short training phase. Results of n= 23 participants show that parameter mapping sonification is more effective in promoting an intuitive understating of the footbridge dynamics compared to audification. Furthermore, when exposed to a short training phase, the participants’ perception improved in identifying the correct dimensions. © 2023, ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering.

2023

Desiring Machines and Affective Virtual Environments

Authors
Forero, J; Bernardes, G; Mendes, M;

Publication
Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering, LNICST

Abstract
Language is closely related to how we perceive ourselves and signify our reality. In this scope, we created Desiring Machines, an interactive media art project that allows the experience of affective virtual environments adopting speech emotion recognition as the leading input source. Participants can share their emotions by speaking, singing, reciting poetry, or making any vocal sounds to generate virtual environments on the run. Our contribution combines two machine learning models. We propose a long-short term memory and a convolutional neural network to predict four main emotional categories from high-level semantic and low-level paralinguistic acoustic features. Predicted emotions are mapped to audiovisual representations by an end-to-end process encoding emotion in virtual environments. We use a generative model of chord progressions to transfer speech emotion into music based on the tonal interval space. Also, we implement a generative adversarial network to synthesize an image from the transcribed speech-to-text. The generated visuals are used as the style image in the style-transfer process onto an equirectangular projection of a spherical panorama selected for each emotional category. The result is an immersive virtual space encapsulating emotions in spheres disposed into a 3D environment. Users can create new affective representations or interact with other previously encoded instances (This ArtsIT publication is an extended version of the earlier abstract presented at the ACM MM22 [1]). © 2023, ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering.

2023

Oral rehabilitation of a saxophone player with orofacial pain: a case report

Authors
Clemente, MP; Mendes, J; Bernardes, G; Van Twillert, H; Ferreira, AP; Amarante, JM;

Publication
JOURNAL OF INTERNATIONAL MEDICAL RESEARCH

Abstract
This paper presents a clinical case study investigating the pattern of a saxophonist's embouchure as a possible origin of orofacial pain. The rehabilitation addressed the dental occlusion and a fracture in a metal ceramic bridge. To evaluate the undesirable loads on the upper teeth, two piezoresistive sensors were placed between the central incisors and the mouthpiece during the embouchure. A newly fixed metal ceramic prosthesis was placed from teeth 13 to 25, and two implants were placed in the premolar zone corresponding to teeth 14 and 15. After the oral rehabilitation, the embouchure force measurements showed that higher stability was promoted by the newly fixed metal-ceramic prosthesis. The musician executed a more symmetric loading of the central incisors (teeth 11 and 21). The functional demands of the saxophone player and consequent application of excessive pressure can significantly influence and modify the metal-ceramic position on the anterior zone teeth 21/22. The contribution of engineering (i.e., monitoring the applied forces on the musician's dental structures) was therefore crucial for the correct assessment and design of the treatment plan.

2023

FluidHarmony: Defining an equal-tempered and hierarchical harmonic lexicon in the Fourier space

Authors
Bernardes, G; Carvalho, N; Pereira, S;

Publication
JOURNAL OF NEW MUSIC RESEARCH

Abstract
FluidHarmony is an algorithmic method for defining a hierarchical harmonic lexicon in equal temperaments. It utilizes an enharmonic weighted Fourier transform space to represent pitch class set (pcsets) relations. The method ranks pcsets based on user-defined constraints: the importance of interval classes (ICs) and a reference pcset. Evaluation of 5,184 Western musical pieces from the 16th to 20th centuries shows FluidHarmony captures 8% of the corpus's harmony in its top pcsets. This highlights the role of ICs and a reference pcset in regulating harmony in Western tonal music while enabling systematic approaches to define hierarchies and establish metrics beyond 12-TET.

2023

Instrument position in Immersive Audio: An empirical review of award-winning practices

Authors
Lopes, A; Barboza, JR; Bernardes, G;

Publication
2023 Immersive and 3D Audio: from Architecture to Automotive (I3DA)

Abstract

Supervised
thesis

2022

Forward Momentum: A study On Harmonic Syntax

Author
Andreia Vieira Martins

Institution
UP-FEUP

2022

Towards Human-in-the-Loop Computational Rhythm Analysis in Challenging Musical Conditions

Author
António Humberto e Sá Pinto

Institution
UP-FEUP

2022

Evaluating Harmonic Features in Automatic Music Mashup Creation

Author
Noémia Cardoso Ferreira

Institution
UP-FEUP

2022

The Singing Bridge: Sonification of a Stress-Ribbon Footbridge

Author
Christian Torresan

Institution
UP-FEUP

2022

Content-Based (Re)Creation of Loops for Music Performance

Author
Diogo Miguel Filipe Cocharro

Institution
UP-FEUP