Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
About

About

Fábio Sester Retorta is an electrical engineer graduated at the Federal University of Paraná (UFPR). During his time in Brazil, he worked for 3 years with ANEEL R & D projects and services in the area of electric power quality by the company Lactec. Fábio earned his master's degree in UFPR with the theme of an ANEEL R & D project being awarded 1 place in the CIGRE Showcase Paris 2018. Since 2015 the researcher has been contributing with publications in international events, chapters of Brazilian books and Brazilian periodicals. The researcher has been working with the themes: electric power quality of wind farms / GD, operation of distributed generation, storage systems, solar thermal energy (CSP), rural electrification, multicriteria methodologies, fuzzy systems, optimization, forecasting methods, and planning of distribution systems. Fábio has taught classes at SENAI and CEPS (technical schools in Brazil) and is a member of the C6 group of CIGRÉ. He currently works at CPES with topics related to energy markets, deregulated electricyty markets, flexibilities in electricity markets, OPF and optimization methods

Interest
Topics
Details

Details

  • Name

    Fábio Retorta
  • Cluster

    Power and Energy
  • Role

    Research Assistant
  • Since

    18th February 2019
003
Publications

2023

A Data-driven Approach to Estimate the Flexibility Maps in Multiple TSO-DSO Connections

Authors
Silva, J; Sumaili, J; Silva, B; Carvalho, L; Retorta, F; Staudt, M; Miranda, V;

Publication
IEEE TRANSACTIONS ON POWER SYSTEMS

Abstract

2023

A Three-Stage Model to Manage Energy Communities, Share Benefits and Provide Local Grid Services

Authors
Rocha, R; Silva, R; Mello, J; Faria, S; Retorta, F; Gouveia, C; Villar, J;

Publication
ENERGIES

Abstract
This paper proposes a three-stage model for managing energy communities for local energy sharing and providing grid flexibility services to tackle local distribution grid constraints. The first stage addresses the minimization of each prosumer’s individual energy bill by optimizing the schedules of their flexible resources. The second stage optimizes the energy bill of the whole energy community by sharing the prosumers’ energy surplus internally and re-dispatching their batteries, while guaranteeing that each prosumer’s new energy bill is always be equal to or less than the bill that results for this prosumer from stage one. This collective optimization is designed to ensure an additional collective benefit, without loss for any community member. The third stage, which can be performed by the distribution system operator (DSO), aims to solve the local grid constraints by re-dispatching the flexible resources and, if still necessary, by curtailing local generation or consumption. Stage three minimizes the impact on the schedule obtained at previous stages by minimizing the loss of profit or utility for all prosumers, which are furthermore financially compensated accordingly. This paper describes how the settlement should be performed, including the allocation coefficients to be sent to the DSO to determine the self-consumed and supplied energies of each peer. Finally, some case studies allow an assessment of the performance of the proposed methodology. Results show, among other things, the potential benefits of allowing the allocation coefficients to take negative values to increase the retail market competition; the importance of stage one or, alternatively, the need for a fair internal price to avoid unfair collective benefit sharing among the community members; or how stage three can effectively contribute to grid constraint solving, profiting first from the existing flexible resources.

2022

Local flexibility need estimation based on distribution grid segmentation

Authors
Retorta, F; Gouveia, C; Sampaio, G; Bessa, R; Villar, J;

Publication
International Conference on the European Energy Market, EEM

Abstract
This work presents a methodology to segment the MV electric grid into grid zones for which the active power flexibility needs that solve the forecasted voltage and current issues are computed. This methodology enables the Distribution System Operator (DSO) to publish flexibility needs per zones, allowing aggregators to offer flexibility by optimizing their portfolio of resources in each grid zone. A case study is used to support the methodology results and its performance, showing the feasibility of solving grid issues by activating flexibility per grid zones according to the proposed methodology. © 2022 IEEE.

2022

Euniversal's smart grid solutions for the coordinated operation & planning of MV and LV networks with high EV integration

Authors
Sampaio, G; Gouveia, C; Bessa, R; Villar, J; Retorta, F; Carvalho, L; Merckx, C; Benothman, F; Promel, F; Panteli, M; Mourão, RL; Louro, M; Águas, A; Marques, P;

Publication
CIRED Porto Workshop 2022: E-mobility and power distribution systems

Abstract

2022

Grid flexibility services from local energy markets: a three-stage model

Authors
Rocha, R; Retorta, F; Mello, J; Silva, R; Gouveia, C; Villar, J;

Publication
TECHNOLOGIES, MARKETS AND POLICIES: BRINGING TOGETHER ECONOMICS AND ENGINEERING

Abstract
This paper proposes an energy community management system for local energy sharing with grid flexibility services to solve the potential grid constraints of the local distribution network. A three-stage model is proposed. Stage 1 is the individual minimization of the energy bill of each prosumer by optimizing the schedules of its battery. The second stage optimizes the energy bill of the energy community by sharing internally the prosumers energy surplus and re-dispatching their batteries, while guaranteeing that each new individual prosumer energy bill is always equal or less than its stage 1 bill. The third stage is performed by the DSO to solve the grid constraints by re-dispatching the batteries, curtailing local generation or reducing consumption. Stage 3 minimizes the impact on stage 2 by minimizing the loss of profit or utility of every prosumer which is compensated accordingly.