Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
About

About

Carla Teixeira Lopes is an assistant Professor in the Department of Informatics Engineering, University of Porto, Portugal. She is also a researcher at INESC TEC since 2014. She received a PhD in Informatics Engineering from the University of Porto in 2013. Her research interests lie at the intersection of information retrieval and human-computer interaction. She is interested in studying information search behaviour and in developing tools that help people search more successfully. Lately, she has been focused in exploring how context can help improve the experience of health consumers searching the Web.

Interest
Topics
Details

Details

  • Name

    Carla Lopes
  • Role

    Senior Researcher
  • Since

    01st May 2014
005
Publications

2026

Evidence-Based Activism and Knowledge Co-production: A Case Study of Online Communities on Therapeutic Cannabis

Authors
Rangel Teixeira A.; Teixeira Lopes C.;

Publication
Lecture Notes in Networks and Systems

Abstract
This study examines the role of online health communities in Brazil dedicated to cannabis treatments for chronic diseases as platforms for evidence-based activism. Using a mixed-methods approach, the research combines qualitative analysis with computational techniques, including Latent Dirichlet Allocation (LDA) topic modeling, to analyze six online groups from WhatsApp and Facebook. Key themes emerging from the analysis include treatment per pathology, treatment effects, access barriers, peer support, and advocacy efforts. The findings reveal how these communities act as epistemic networks, where patients and caregivers co-produce knowledge by sharing personal experiences and engaging in dialogue with healthcare professionals. This study highlights how online health communities transform experience sharing into structured evidence, enabling collective action to address barriers such as limited access to cannabis-based treatments. It underscores the potential of digital platforms to empower patients, foster collaboration with healthcare professionals, and influence health governance.

2026

Enhancing Knowledge Access in Online Health Communities: A Chatbot Prototype for Cannabis Treatment Support

Authors
Rangel Teixeira, A; Teixeira Lopes, C;

Publication
Lecture Notes in Networks and Systems

Abstract
Online health communities enable patients and caregivers to share experiences, seek advice, and collaboratively generate knowledge about treatments and condition. However, accessing relevant information often proves challenging due to platform limitations like insufficient search functionalities. A previous study identified key topics discussed in Brazilian online health groups centered on cannabis treatments for chronic diseases. Building on these findings, this study introduces a proof-of-concept chatbot designed to enhance access to the collective knowledge within these communities. The chatbot prototype, built using Google Dialogflow, was tailored to provide contextually relevant, accurate, and user-friendly responses. A user study involving 38 participants evaluated its performance, showing high user satisfaction, task completion rates, and trust in the information provided. The results highlight the chatbot’s potential enhance knowledge accessibility, promote patient engagement, and support evidence-based activism by organizing and disseminating community-generated content effectively. © The Author(s), under exclusive license to Springer Nature Switzerland AG 2026.

2025

Can Llama 3 Accurately Assess Readability? A Comparative Study Using Lead Sections from Wikipedia

Authors
Rodrigues, JF; Cardoso, HL; Lopes, CT;

Publication
RESEARCH CHALLENGES IN INFORMATION SCIENCE, RCIS 2025, PT II

Abstract
Text readability is vital for effective communication and learning, especially for those with lower information literacy. This research aims to assess Llama 3's ability to grade readability and compare its alignment with established metrics. For that purpose, we create a new dataset of article lead sections from English and Simple English Wikipedia, covering nine categories. The model is prompted to rate the readability of the texts on a grade-level scale, and an in-depth analysis of the results is conducted. While Llama 3 correlates strongly with most metrics, it may underestimate text grade levels.

2025

Evaluating Llama 3 for Text Simplification: A Study on Wikipedia Lead Sections

Authors
Rodrigues, JF; Cardoso, HL; Lopes, CT;

Publication
COMPANION PROCEEDINGS OF THE ACM WEB CONFERENCE 2025, WWW COMPANION 2025

Abstract
Text simplification converts complex text into simpler language, improving readability and comprehension. This study evaluates the effectiveness of open-source large language models for text simplification across various categories. We created a dataset of 66,620 lead section pairs from English and Simple English Wikipedia, spanning nine categories, and tested Llama 3 for text simplification. We assessed its output for readability, simplicity, and meaning preservation. Results show improved readability, with simplification varying by category. Texts on Time were the most shortened, while Leisurerelated texts had the greatest reduction of words/characters and syllables per sentence. Meaning preservation was most effective for the Objects and Education categories.

2025

Cross-Lingual Entity Linking Using GPT Models in Radiology Abstracts

Authors
Dias, M; Lopes, CT;

Publication
RESEARCH CHALLENGES IN INFORMATION SCIENCE, RCIS 2025, PT II

Abstract
Entity linking is an important task in medical natural language processing (NLP) for converting unstructured text into structured data for clinical analysis and semantic interoperability. However, in lower-resource languages, this task is challenging due to the limited availability of domain-specific resources. This paper explores a translation-based cross-lingual entity linking approach using GPT models, GPT-3.5 and GPT-4o, for zero-shot machine translation and entity linking with in-context learning. We evaluate our approach using a Portuguese-English parallel dataset of radiology abstracts. Our results show that chunk-level machine translation outperforms sentence-level translation. Moreover, our translationbased approach to cross-lingual entity linking of UMLS concepts outperformed the multilingual encoder method baseline. However, the in-context learning entity linking approach did not outperform a translation-based approach with a dictionary-based entity linking method.

Supervised
thesis

2023

ArchMine: Learning from non-machine-readable documents for additional insights

Author
Mariana Ferreira Dias

Institution
UP-FEUP

2023

Integration of models for linked data in cultural heritage and contributions to the FAIR principles

Author
Inês Dias Koch

Institution
UP-FEUP

2023

Images as data and metadata: management practices to promote Findability, Accessibility, Interoperability and Reusability of research data

Author
Joana Patrícia de Sousa Rodrigues

Institution
UP-FEUP

2023

Archive users, their characteristics and motivations

Author
Luana Rodrigues Ponte

Institution
UP-FEUP

2022

Integration of models for linked data in cultural heritage and contributions to the FAIR principles

Author
Inês Dias Koch

Institution
UP-FEUP